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The methodology

Physical Problem

Mathematical Model
(PDE + BC + IC)(PDE + BC + IC)

Numerical Model

Results verification 
and validation
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Linear and nonlinear problems

In the analysis of a solid under mechanical and thermal loads

some of the nonlinearities that we may encounter 

when formulating the mathematical model are:
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Geometrical nonlinearities

The equilibrium equations have to be satisfied in the 

unknown deformed configuration of the solid rather g

than in the known unloaded configuration.
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Geometrical nonlinearities

Wh  th  l t t  th t f  h /hi   th  When the analyst expects that for her/his purposes the 

difference between the deformed and unloaded 

fi ti   b  l t d h /h   di d thi  configurations can be neglected she/he may disregard this 

source of nonlinearity obtaining an important 

i lifi tii lifi ti i  th  th ti l d lsimplificationsimplification in the mathematical model.
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Geometrical nonlinearities

An intermediate step would be to consider the equilibrium 

in the deformed configuration but to assume that the 

strains are very small (infinitesimal strains assumption). 

This also produces an important simplification in the 

mathematical model. 
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Geometrical nonlinearities

Of course, all the simplifications introduced in the 

mathematical model have to be checked for their 

properness when examining the numerical results.
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Material nonlinearities

The material stress-strain relation is non linear.

E g  plasticity  viscoplasticity  creep  fracturing E.g. plasticity, viscoplasticity, creep, fracturing 

materials (concrete), etc.
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Geometrical nonlinearities (Ex. 1)
Infinitesimal strains: buckling of a straight column
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Geometrical nonlinearities (Ex. 1)
Infinitesimal strains : buckling of a straight column

Even if we decide to model the material as "infinitely" linear

elastic the geometrically linear model can only be used for

very small displacement and a geometrically nonlinear

analysis under the infinitesimal strains assumption should be

otherwise performed if we need to predict the column

buckling loadg
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Geometrical nonlinearities (Ex. 2)
Infinitesimal strains
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Geometrical nonlinearities (Ex. 3)
Infinitesimal strains
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Geometrical nonlinearities (Ex. 3)
Infinitesimal strains

The expected displacements are very small and noThe expected displacements are very small and no

equilibrium bifurcation can be expected.

HH ft th i ldi f th id bHowever,However, after the yielding of the side bars, we can

only get a solution if the geometrical nonlinearities,

under the infinitesimal strains assumption, are

included in the model.
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Geometrical nonlinearities (Ex. 4)
Infinitesimal strains
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Material nonlinear only (MNO)  (Ex. 5)

Salt dome
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Material nonlinear only (MNO)  (Ex. 5)

ε [%]
this worktotal creep strain

ε
[1]

Calibration of creep constitutive models with 1D lab tests
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Material nonlinear only (MNO)  (Ex. 5)
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Material nonlinear only (MNO)  (Ex. 5)
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Material nonlinear only (Ex. 6)

Fracturing material: concrete
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Geometrical and material nonlinearities(Ex. 6)
Fi it t iFinite strains
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Geometrical and material nonlinearities(Ex. 7)
Fi it t iFinite strains

Undeformed sample Deformed sample
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Undeformed sample Deformed sample



Geometrical and material nonlinearities(Ex. 7)
Fi it t iFinite strains
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Geometrical nonlinear analysis: contact (Ex. 8) 

μ (pipes/well)=0.0 μ (pipes/well)=0.1

Comparison at the central cross section
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Industrial applications 
3D Modeling of steel hot rolling  3D Modeling of steel hot rolling  

Couple:

• Eulerian formulation
that describes 
the rolled steel
deformationdeformation

• Standard Lagrangian
formulation that
describes the rolls
deformation
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Industrial applications 
3D Modeling of steel hot rolling  3D Modeling of steel hot rolling  
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Industrial applications 
3D Modeling of steel hot rolling  3D Modeling of steel hot rolling  

REHEAT  FUR.         RSB              R1   WG-R1      E1      R2              E2      R3              E3      R4     WG-R4
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Industrial applications 
3D Modeling of steel hot rolling  3D Modeling of steel hot rolling  
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Industrial applications 
3D Modeling of steel hot rolling  3D Modeling of steel hot rolling  
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Model Validation



Industrial applications
Modeling the Mannesmann piercing process  Modeling the Mannesmann piercing process  

30
www.simytec.com



Industrial applications
Modeling the Mannesmann piercing process  Modeling the Mannesmann piercing process  

Model Validation

31
www.simytec.com

Model Validation



Industrial applications
Marine pipeline collapseMarine pipeline collapse

Model Validation
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Industrial applications
Marine pipeline collapseMarine pipeline collapse

Model Validation
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Industrial applications
OCTG Threaded connectionsOCTG Threaded connections

Detail of Detail of 

the seal areathe threads
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Industrial applications
OCTG Threaded connectionsOCTG Threaded connections

Model Validation
FEA vs. Strain Gages (with dope pressure)
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Industrial applications
WaterhammerWaterhammer

Water
Re: 5700

p

Water
Tank

12.5 bar Pipeline

h h l l d h d

100 m

Fast Closing Valve

Waterhammer experiment. The valve is closed at t=0; the pipe dimensions are
L=100m; ID=0.016m and OD=0.018m. Fluid: water
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Industrial applications
WaterhammerWaterhammer

Model Validation

Normalized pressure at the valve  Comparison of calculated and experimental results
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Normalized pressure at the valve. Comparison of calculated and experimental results



Nomenclature
Summation convention 

 

Tensors 
Using Cartesian coordinates 

Vectors 

Second order tensors (dyadic representation) 

 

In some references 
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Nomenclature

T iTensor operations
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Nomenclature
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