

Advanced Topics in Computational Solid Mechanics. Industrial Applications

Section 7: Modeling of Bulk Metal Forming Processes: The Flow Formulation Industrial Applications

Eduardo N. Dvorkin

Stanford University Mechanical Engineering Winter Quarter 2010

Steel Pipes Manufacturing Process (1)

Steel Pipes Manufacturing Process (2)

Steel Pipes Manufacturing Process (3)

Steel Coils Manufacturing Process (1)

Steel Coils Manufacturing Process (2)

Computational Modeling

- Optimizing production processes
- Developing new products

Modeling of Bulk Metal Forming Processes

- Via the Flow Formulation
- Rigid viscoplastic material models
- Pseudo-concentrations Technique

Modeling of Bulk Metal Forming Processes

Use Q1-P0 elements (2D) or H1-P0 (3D) elements

or other

non-locking elements to interpolate the velocities and pressures

www.simytec.com

Perzyna's flow rule - Rigid-Viscoplastic model

$${}^{t}s_{\alpha\beta} = 2^{t}\mu {}^{t}d_{\alpha\beta}^{VP}$$
$${}^{t}\mu = \frac{\frac{{}^{t}\sigma_{y}}{\sqrt{3}} + \left[\frac{\sqrt{3}}{\gamma} {}^{t}\frac{\cdot}{\overline{\varepsilon}_{VP}}\right]^{\frac{1}{\delta}}}{\sqrt{3} {}^{t}\frac{\cdot}{\overline{\varepsilon}_{VP}}}$$

In the limit, when $\gamma \to \infty$ Eq. (5.168) describes the behavior of a rigidplastic material (inviscid), in this case,

$${}^{t}\mu = \frac{{}^{t}\sigma_{y}}{3 \; {}^{t}\!\dot{\overline{\varepsilon}}_{VP}} \cdot \tag{5.169}$$

The Flow Formulation Via The Pseudo-Concentrations Technique

Eulerian Formulation

In a fixed mesh:

 $c \ge 0 \iff$ there is material at the point, $c < 0 \iff$ there is no material at the point

 $\underline{\mu}$: material velocity

The Flow Formulation Via The Pseudo-Concentrations Technique

c>0	µ= µ _{material}		
c<0	$\mu = 10^{\alpha} \mu_{material}$ ($\alpha = 4$ to 6)		

Equilibrium Equations via the Augmented Lagrangian Procedure

$$\int_{V} 2 \mu^{(k-1)} \Delta \dot{\varepsilon}'_{ij} \,\delta \Delta \dot{\varepsilon}'_{ij} dv + \int_{V} \varkappa \Delta \dot{\varepsilon}_{v} \,\delta \Delta \dot{\varepsilon}_{v} \,dv = \int_{V} f_{i}^{v} \,\delta \Delta \dot{u}_{i} \,dv + \int_{S_{\sigma}} t_{i} \,\delta \Delta \dot{u}_{i} \,dv - \int_{V} s_{ij}^{(k-1)} \,\delta \Delta \dot{\varepsilon}'_{ij} dv - \int_{V} (p^{(k-1)} + \varkappa \dot{\varepsilon}_{v}^{(k-1)}) \,\delta \Delta \dot{\varepsilon}_{v} \,dv$$

$$\begin{aligned} \dot{u}_i^{(k)} &= \dot{u}_i^{(k-1)} + \Delta \dot{u}_i^{(k)} \\ \dot{\varepsilon}_{ij}^{\prime(k)} &= \dot{\varepsilon}_{ij}^{\prime(k-1)} + \Delta \dot{\varepsilon}_{ij}^{\prime(k)} \\ \dot{\varepsilon}_v^{(k)} &= \dot{\varepsilon}_v^{(k-1)} + \Delta \dot{\varepsilon}_v^{(k)} \\ p^{(k)} &= p^{(k-1)} + \varkappa \dot{\varepsilon}_v^{(k)} \end{aligned}$$

Augmented Lagrangian Procedure

Example: Hydrostatic pressure

α		Penalty	Augmented Lagrangean
	$\vec{e}_{\nu} _{\max}$	0.838	0.362E-8
1	$\max\left[\left(\frac{ p_{FE} - p_{TH}}{p_{TH}}\right) \text{elem.center}\right]$	0.118	0.000
	$\log_{10} \frac{d_{max}}{d_{min}}$	0.957	0.957
	$\hat{\varepsilon}_{\nu} _{\max}$	0.950E-7	0.266E-14
8	$\max\left[\left(\frac{ p_{FE} - p_{TH}}{p_{TH}}\right) \text{elem.center}\right]$	0.000	0.000
	$\log_{10} \frac{d_{max}}{d_{min}}$	7.335	7.335

p_{re}: finite element predicted pressure

Augmented Lagrangian Procedure

Transport Equations for the Equivalent Plastic Strain

 $\overline{\varepsilon}$: material derivative of the equivalent plastic strain.

$$\frac{\bullet}{\overline{\varepsilon}} = \left(\frac{2}{3}\dot{\varepsilon}_{ij}\dot{\varepsilon}_{ij}\right)^{\frac{1}{2}} \qquad \qquad \frac{\bullet}{\overline{\varepsilon}} = \frac{D\ \overline{\varepsilon}}{D\ t} = \frac{\partial\overline{\varepsilon}}{\partial t} + \underline{\dot{u}}\cdot\underline{\nabla}\overline{\varepsilon}$$

$$\underline{\dot{u}} \cdot \underline{\nabla}\overline{\varepsilon} = \frac{\langle c \rangle}{|c|} \stackrel{\bullet}{\overline{\varepsilon}} (stationary \ problems)$$
$$\frac{\partial \overline{\varepsilon}}{\partial t} + \underline{\dot{u}} \cdot \underline{\nabla}\overline{\varepsilon} = \frac{\langle c \rangle}{|c|} \stackrel{\bullet}{\overline{\varepsilon}} (transient \ problems)$$

c-dependent Boundary Conditions

For nodes that are in contact with forming tools:

$$c < 0 \Longrightarrow \dot{u}_n = free$$
$$c \geqslant 0 \Longrightarrow \dot{u}_n = 0$$

At the contact nodes we impose friction:

- Coulomb friction law
- Constant friction law

C-dependent Boundary Conditions

(a) constant boundary conditions

Solution Algorithm

1. k = -12. k = k + 12.1. $j = 0; \quad \dot{\mathbf{u}}^{(j)} = \dot{\mathbf{u}}^{(k-1)}$ 2.2. j = j + 1Calculate $\underline{\dot{u}}^{(j)}$ (keeping constant the *c*-distribution and *ē*-distribution) using Eqs. (8) and (9) 2.3. IF $\frac{\|\underline{\dot{\mathbf{u}}}^{(j)} - \underline{\dot{\mathbf{u}}}^{(j-1)}\|_2}{\|\underline{\dot{\mathbf{u}}}^{(j)}\|_2} \leq UTOL$ and $\|\underline{\dot{\varepsilon}}_{\nu}^{(j)}\|_{\infty} \leq VTOL$ THEN $\rightarrow \dot{\mathbf{u}}^{(k)} = \dot{\mathbf{u}}^{(j)}$ GO TO 3 ELSE GO TO 2.2 3. Calculate the *c*-distribution and \bar{e} -distribution using Eq. (15) 4. IF k = 0 GO TO 2 5. IF $\frac{\|\dot{\mathbf{u}}^{(k)} - \dot{\mathbf{u}}^{(k-1)}\|_2}{\|\dot{\mathbf{u}}^{(k)}\|_2} \leq UTOL$ and $\|\dot{\mathbf{z}}_{\nu}^{(k)}\|_{\infty} \leq VTOL$ THEN → convergence ELSE GO TO 2

Solution Algorithm

 $\int 2\mu\Delta\dot{\varepsilon}_{ij}^{\prime}\delta\Delta\dot{\varepsilon}_{ij}^{\prime}d\nu + \int \kappa\Delta\dot{\varepsilon}_{\nu}\delta\Delta\dot{\varepsilon}_{\nu}d\nu = \int f_{i}^{\nu}\delta\Delta\dot{u}_{i}d\nu + \int t_{i}^{*}\delta\Delta\dot{u}_{i}ds$ $-\int s_{ij}^{(k-1)} \delta \Delta \dot{\varepsilon}_{ij}' d\nu$ $-\int (p^{(k-1)} + \kappa \dot{\varepsilon}_{v}^{(k-1)}) \delta \Delta \dot{\varepsilon}_{v} dv$ (8)κ: penalty parameter. Then we update, $\dot{u}_{i}^{(k)} = \dot{u}_{i}^{(k-1)} + \Delta \dot{u}_{i}; \quad \dot{\varepsilon}_{ij}^{\prime(k)} = \dot{\varepsilon}_{ij}^{\prime(k-1)} + \Delta \dot{\varepsilon}_{ij}$ (9) $\dot{\varepsilon}_{v}^{(k)} = \dot{\varepsilon}_{v}^{(k-1)} + \Delta \dot{\varepsilon}_{v}; \quad p^{(k)} = p^{(k-1)} + \kappa \dot{\varepsilon}_{v}^{(k)}.$

Solution Algorithm

$$\underline{\dot{\mathbf{u}}} \cdot \underline{\nabla} c = 0 \tag{15a}$$
$$\underline{\dot{\mathbf{u}}} \cdot \underline{\nabla} \overline{c} = \left\langle \frac{c}{|c|} \right\rangle \dot{\overline{c}}. \tag{15b}$$

In STEP 3 for transient problems, starting from the *c*-distribution corresponding to time *t* solve:

$$\frac{\partial c}{\partial t} + \underline{\dot{\mathbf{u}}}_{R} \cdot \underline{\nabla} c = 0 \tag{15c}$$

and starting from the $\bar{\varepsilon}$ -distribution corresponding to time *t* solve:

$$\frac{\partial \bar{\varepsilon}}{\partial t} + \underline{\dot{\mathbf{u}}}_{R} \cdot \nabla \bar{\varepsilon} = \left\langle \frac{c}{|c|} \right\rangle \dot{\bar{\varepsilon}}.$$
(15d)

www.simytec.com

Stationary Case

Rolling of Steel Plates

H < 3 indicates a double peaks type contact pressure distribution. In this case the deformation pattern is more inhomogeneous (type 1)

Transient Case

Upsetting process

www.simytec.com

Thermo - Mechanical Coupling

Equilibrium equations

$$\overline{\sigma} = \sigma_y = \sigma_y(\overline{\varepsilon}, \overline{\varepsilon}, T)$$

Heat transfer equations

In domain W

$$\rho C \dot{T} = \underline{\nabla} \cdot k \, \underline{\nabla} T \, + \beta \, \underline{\underline{\sigma}} : \underline{\underline{\dot{\epsilon}}}^p$$

B: Taylor-Quinney coefficient (between 0.85 and 0.95)

In contour $G_n = G - G_T$

 $q_n = -k \, \underline{\nabla} T \cdot \underline{n}$ Heat flux boundary condition

Gleeble 3500 Simulator CINI (Tenaris)

Undeformed sample

Deformed sample

www.simytec.com

www.simytec.com

Barreling

Hot Rolling of Steel Coils

Figure 3: Hot rolling mill

3D Modeling of Hot Rolling

Couple:

- Eulerian formulation that describes the rolled steel deformation
- Standard Lagrangian formulation that describes the rolls deformation

Phenomenological Constitutive Relations

Phenomenological constitutive equations

1. The Fields - Backofen law

$$\sigma_y = A(T) \,\overline{\varepsilon}^{n(T)} \,\frac{\cdot}{\overline{\varepsilon}}^{m(T)}$$

This model cannot represent recristalization phenomena

2. Exponential - power law 1

$$\sigma_y = \left[A(T) \ e^{-B(T)\overline{\varepsilon}} \ (\overline{\varepsilon} + \overline{\varepsilon}_o)^{n(T)} + C(T) \ (1 - e^{-B(T)\overline{\varepsilon}}) \right] \frac{\cdot}{\overline{\varepsilon}}^{m(T)}$$

3. Exponential - power law 2

$$\sigma_y = [A(T) \ e^{-B(T)\overline{\varepsilon}} \ \sqrt{(1 - e^{-n(T)(\overline{\varepsilon} + \overline{\varepsilon}_o)})} + C(T) \ (1 - e^{-B(T)\overline{\varepsilon}})]\overline{\varepsilon}^{.m(T)}$$

Mechanical tests to determine the material constants

www.simytec.com

Compression tests

Coeficiente de fricción m= 0.2

Coeficiente de fricción m= 0.9

When there is friction, it fails to represent a uniform strain test

The torsion test

Results obtained using TESTPOST

TORQUE-TURN Experimental VS Numerical BAR Semples T=1060 °C

Hot Rolling of Steel Plates

Model validation at the F10

Temperature map of the work roll at the instant at which the last coil exits the stand F10 (t_{out})

www.simytec.com

Hot Rolling of Steel Plates

Model validation at the F10

Stand F10				
Coil N°	Width	Time In Time Out		
	[mm]	[sec]	[sec]	
1	1046	0	60	
2	1040	155	215	
3	1042	286	345	
4	1045	373	432	
5	1044	469	531	
6	1041	567	624	
7	1146	653	713	
8	1143	753	813	
9	1257	856	915	
10	1260	962	1021	
11	1262	1077	1136	
12	1263	1205	1264	
13	1264	1309	1368	
14	1262	1415	1474	
Time of th	e interruption o	f the refrigerating	g water	
Begining of the measurement of roll surface temperature				
Ending of the measurement of roll surface temperature				

Finite element simulation of work roll temperature build-up

Hot Rolling of Steel Plates

Model validation at the F10

Asymmetric Rolling

Experimental (aluminum) results and FEM results for various "m"

Vertical Rolling (edging)

Vertical Rolling (edging)

www.simytec.com

Vertical Rolling (edging)

Experimental validation of numerical results

Product Process Steel Seamless Pipes

The Mannesmann piercing process

[Profile scheme	Bar diameter
Case 1		395 mm
Case 2	<u> </u>	395 mm
Case 3		215 mm

Plug #	# Elements	# d.o.f.	FEM-helix pitch	Exphelix pitch
1	96,576	309,547	1158 mm	1054 mm
2	100,950	322,894	714 mm	695 mm

Plug # 1 (interrupted piercing)

Sensitivity analyses

Plug	μ_{rolls}	μ_{shoes}	μ_{plug}	$\mathbf{L}_{Mann.}$	FEM-pitch	$\frac{FEM \text{ pitch}}{Exp.\text{pitch}}$
1	0.2	0.2	0.35	λ_1	$1054 \ mm$	0.88
1	0.5	0.2	0.35	λ_1	1252 mm	1.05
1	0.2	0.2	0.35	$2\lambda_1$	$1158 \ mm$	0.97
2	0.2	0.2	0.35	λ_2	$695 \ mm$	0.88
2	0.5	0.2	0.35	λ_2	$899 \ mm$	1.14
2	0.2	0.2	0.35	$2\lambda_2$	$714 \ mm$	0.90

Mapping of the inner and outer surfaces (interrupted piercing)

Contact Pressure [Mpa]