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What are inverse problem? Are they useful? 

The solution of a direct problem involves finding effects based on a complete 
description of their causes.

?
Cause Effect

?

The solution of an inverse problem involves determining unknown causes 
based on observations of their effects.

Cause Effect
?

Prof. Oleg Mikailivitch Alifanor proponent of Inverse Methods: “Solution of an inverse problem
entails determining unknown causes based on observation of their effects. This is in contrast to the
corresponding direct problem, whose solution involves finding effects based on a complete
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corresponding direct problem, whose solution involves finding effects based on a complete
description of their causes”



What are inverse problem? Are they useful? 
A simple illustration in particle dynamics

A motion of a mass in a gravitational field depends completely on the initial 
position and velocity of the object

F=mgx0 v0

position and velocity of the object.

g
Inverse problem

g

Direct problem

F=mg?
mxj

mvjDirect problem

g
mxi

mvi
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What are inverse problem? Are they useful? 
Inverse problems in engineering

• Parameter identification (e.g. Physical properties of materials)
NDT ( g  D t ti  f id  d k )• NDT (e.g. Detection of voids and cracks)

• Boundary inverse problems
• Retrospective problems (e.g. Backward evolution)
• Inverse Scattering and Tomography (e.g. Medical engineering)
• Image processing (e.g. Image deblurring and denoising)
•• ....
• Product development (e.g. Shape optimization in acoustics, aerodynamics, 

electromagnetism)
P  ti i ti  (  C ti  ti  li  t t ) • Process optimization (e.g. Continuous casting cooling strategy) 
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What are inverse problem? Are they useful? 
Class of inverse problems

Backward or retrospective problem: the initial conditions are to be foundBackward or retrospective problem: the initial conditions are to be found.

Coefficient inverse problem: a coefficient in a governing equation is to be
found.found.

Boundary inverse problem: some missing information at the boundary of a
domain is to be found.
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General statement of an inverse problem 
D fi iti f l di t blDefinition of a general direct problem

M4
∂T ∇  k∇T  0 ∀x ∈ 

• PDE



• BC
T  Tw ∀x ∈ ∂T



M1

M2

M3 −k ∇T  n  qw ∀x ∈ ∂q

−k ∇T  n  h T − T  ∀x ∈ ∂c

M1 ∂n
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General statement of an inverse problem 
Definition of an inverse problem

∂T Parameter 
Inverse

geometry
M4

T

∇  k∇T  0 ∀x ∈ 
• PDE

Parameter 
identification 

geometry
problem

 M3
• BC

T  Tw ∀x ∈ ∂T

Boundary
inverse
problem

M1

M2

∂n Measurements! 

Ob Ob

−k ∇T  n  qw ∀x ∈ ∂q

−k ∇T  n  h T − T  ∀x ∈ ∂c

problem

Ti
Obs x i

Obsat 
 

Parameter 
identification 
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General statement of an inverse problem 
Well-posed problems and ill-posed problems

• A solution exists for all admissible data  solvability condition
• The solution is unique  uniqueness condition

well-posed
problems• The solution is unique  uniqueness condition

• The solution depends continuously on the data  stability condition

problems

ill-posed
problems

• If one of these properties does not hold
– Solvability condition can usually be enforced by relaxing 

the notion of a solution. 
– Uniqueness condition is considered to be much more serious. 

Non-uniqueness is usually introduced by the need for discretization.
– Stability condition is usually violated (small observation perturbations can 

lead to big errors in the solution) Regularization methods!
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General statement of an inverse problem 
Well-posed problems and ill-posed problems

- Direct problem x
A
 y Ax  y A ∈ Rmn, x ∈ Rn, y ∈ Rm

A y x
- Inverse problem

1) Given      and      , find y
A−1
 x

2) Given      and      , find Ayx

If              and               (imagen de A) Infinite solutions m  n y ∈ IIf              and               (imagen de A) Infinite solutions m  n y ∈ IA

If              (measurement uncertainties) y ∉ IA x0  arg
x

min ‖Ax − y‖

I  fi i di i l b  h  l i  i  bl  In finite-dimensional subspaces the solution is stable 

In infinite-dimensional subspaces the solution is unstable 

(when discretized  matrixes are ill-conditioned)
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Regularization methods 
The most active and stable period for development of solution methods and theirThe most active and stable period for development of solution methods and their
application has been during the last 25-30 years.

( i  t )Gi obs

Tikhonov Regularization Method

x  ATA−1  ATyobs- Least squares minimization Unstable !!

(noisy measurements)Given yobs

1- Tikhonov regularization
Regularization 
parameter

xsn  ATA I−1  ATyobs

2xsn  arg
x

min ‖Ax − yobs‖2  ‖x‖2

Comp omise bet een minimi ing the esid al no m  and keeping the “penalt  te m” small
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Compromise between minimizing the residual norm, and keeping the “penalty term” small.



N li  i  bl

Regularization methods 
Nonlinear inverse problems

Given        a function defined by least-square error between the calculated FxGiven       , a function defined by least square error between the calculated 
and measured data:

Fx

Fx  1 Tx − TObs 2

... using the Gauss-Newton method for the minimization

Fx 2 Tx T

I 1 I T −1 T ObxIter1  xIter  DTxIter 
T DTxIter   DTxIter 

T TObs − TxIter 

Sensitivity matrix
Partial derivatives of the data 

But the iteration is unstable !!

Partial derivatives of the data 
with respect to the unknowns.
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Nonlinear inverse problems

Regularization methods 
Nonlinear inverse problems

1) The Landweber’s method

xIter1  xIter   I  DTxIter 
T TObs − TxIter 

Relaxation parameter

2) The Levenberg-Marquardt method

xIter1  xIter  DTxIter 
T DTxIter   Iter I

−1
 DTxIter 

T TObs − TxIter 

3) The iteratively regularized Gauss-Newton method

Regularization parameter

xIter1  xIter  DTxIter 
T DTxIter   Iter LT L

−1

 DTT TObs − T It  I LT L x − xIter 

Regularization matrix
Differential operators
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 DTxIter  T − TxIter   Iter L L x − x 



Nonlinear inverse problems The must-do list

Regularization methods 

a) Identify the observations, its location and noise level.
b) Identify the unknowns and parametrize them in order to consider finite-dimensional 

Nonlinear inverse problems – The must-do list

b) Identify the unknowns and parametrize them in order to consider finite-dimensional 
subspaces.

c) State the direct problem and solve it (F.E.M.).
d) State the inverse problem  we usually deal with nonlinear inverse problemsd) State the inverse problem ... we usually deal with nonlinear inverse problems.
e) Decide how to evaluate the sensitivity matrix: 

“discretize-then-differentiate” or “differentiate-then-discretize”
f) Determine the regularization parameter (a monotically decreasing sequence) and the f) Determine the regularization parameter (a monotically decreasing sequence) and the 

regularization matrixes.
g) Decide the convergence criterion / stopping rule 

(th  di  i i l )(the discrepancy principle).
h) Think about useful a priori information to enhance regularization.
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Inverse problems in engineering 

Experimental observation
Tobs

Initial 
Data, x0

Direct Method 

Objective function, F

Tcal

New  xiter+1

Inverse Problem 
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Continuous casting steel mold heat transfer

Inverse problems in engineering 
Continuous casting steel-mold heat transfer

Copper mold model

Mold

• PDE:

• BC:

∇  km∇Tm   0 ∀x ∈ m

−km∇Tm  n  hwTm − Tw ∀x ∈ ∂c
w

Nozzle

Mold

−km∇Tm  n  hsTm − Ts  ∀x ∈ ∂ s

km∇Tm  n  0 ∀x ∈ ∂q
a

Steel

?
Steel-mold 
heat transfer

Steel solidification model

• PDE:
̇

?

• BC:

sḢs − ∇  ks∇Ts
∗   0 ∀x, t ∈ s  tm

i , tm
o 

Ts
∗  Tcast ∀x ∈ s , t  tm

i
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−ks∇Ts
∗  n  hs

∗Ts
∗ − Tm

∗  ∀x, t ∈ ∂s  tm
i , tm

o 



Continuous casting steel-mold heat transfer

Inverse problems in engineering 
Continuous casting steel mold heat transfer

Observations:

Nozzle
Measurement Observed variable

Mold

Nozzle

Ti
obs Ti

obs

Gw
obs

ΔTw
obs Qw

obs  Gw
obs cw ΔTw

obs

h b

Steel-mold 
heat transfer

Steel --hlevel
obsncoef  ntc  1

?

Measurement Observed variable A priori 
information

--Ti
obs Ti

obs

Useful a priori information:
• maximum at meniscus
• smooth function

--

-- Local maximum

Gw
obs

ΔTw
obs Qw

obs  Gw
obs cw ΔTw

obs

hlevel
obs
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-- -- Smooth function



Continuous casting steel-mold heat transfer

Inverse problems in engineering 
Continuous casting steel mold heat transfer

Statement of the inverse problem:

Mold

min 1
2 ‖x‖2  J apriori

subject to Ax − b  0

Nozzle

Mold

The system is

j
gi ≤ 0 i  1, nlevel,

?

Steel

Steel-mold 
heat transfer Measurements

are imposed

The system is
underdetermined

and does not have
an unique solution

?

A priori information 
is incorporated in order to 

cope with the non-uniqueness 
of the problem 

2 2
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J apriori  1
2 ‖Lmaxhs

0  x‖2  1
2 ‖Lsmoothhs

0  x‖2



C ti ti g t l ld h t t f

Inverse problems in engineering 
Continuous casting steel-mold heat transfer

From the must-do list ....
• Decide how to evaluate the sensitivity matrix:

“discretize-then-differentiate” or “differentiate-then-discretize”

Direct problem
Kcond  Kw 

k 1

ncoef

∑ hs,k Ks,k Tm − KwTw −
k 1

ncoef

∑ hs,k Ks,k Ts  0

Sensitivity equations

k1 k1

ncoef

∑ ∂T ncoef

∑Kcond  Kw 
k1

∑ hs,k Ks,k
∂Tm
∂hs,j

−
k1

∑  j,k Ks,k Ts − Tm   0

Are used in the sensitivity matrix
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E ti ti  f th  bl t f  h th  fil

Inverse problems in engineering 
Estimation of the blast furnace hearth wear profile

The 1150°C isotherm represents a potential limit on the penetration of liquid into the p p p q
hearth wall porosity (1150°C is the eutectic temperature of carbon saturated iron).

Wear line profile

The location of the 1150°C isotherm is 
estimated solving a non-linear inverse 

Wear-line profile

heat transfer problem, where the 
observations are temperature 
measurements and the unknown is the 
geometry.
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Estimation of the blast furnace hearth wear profile

Inverse problems in engineering 
Estimation of the blast furnace hearth wear profile

M4
∂T

Fixed boundary, where natural boundary 
conditions are applied.

∂n


M2

M3

Unknown boundary, where a known 
temperature is applied.

W  id   bl  i  fi it di i l 

∂T

M1

M2

∂n

We consider our problem in finite-dimensional 
subspaces:

np Number of parameters       that 
describe the geometry



M4

∂T

Number of observations located 
inside  

nobs



M1

M2

M3

∂n

p∗  arg
p∈Rnp
min F p

F p  1
2
‖ Tp − TOBS‖2

where

Non-linear inverse problem
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Estimation of the blast furnace hearth wear profile

Inverse problems in engineering 
Estimation of the blast furnace hearth wear profile

In order to guarantee a stable solution the iteratively regularized Gauss-Newton 
method is applied:

GNpIter1  pIter  DTpIter 
T DTpIter    Iter LT L

−1

 DTT ΔTOBS   LT L p pIter  DTpIter  ΔTpIter    Iter L L p − p 

where:
DTp

Sensitivity matrix (partial derivatives of the temperature with respect to the set 
of geometry parameters)

L Regularization matrix (a discrete form of some differential operator)

p A priori suitable approximation of the unknown set of parameters

pIter1  pIter   Iter GNpIter1 − pIterThe problem is highly non-linear:

[*] B k hi kii  C t  M th  M th  Ph  1992
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[*] Bakushinskii, Comput. Maths Math. Phys., 1992.



Estimation of the blast furnace hearth wear profile

Inverse problems in engineering 
Estimation of the blast furnace hearth wear profile

From the must-do list ....
• Decide how to evaluate the sensitivity matrix:Decide how to evaluate the sensitivity matrix:

“discretize-then-differentiate” or “differentiate-then-discretize

By finite difference approximationBy finite difference approximation

∂T
∂pj x,p

≈

T x, p1 ,…,p jΔp j ,…,pnp

−

T x, p1 ,…,p j ,…,pnp

Δpj

If we do it on each node and we use the same discretization support used for
the temperature field:

 ,p

∂T ∂T
FEM

∂T
∂pj x,p

≈ Nx
∂T
∂pj p

Are used in the sensitivity matrix
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Are used in the sensitivity matrix



Summary 
N li  i  bl  Th  t d  li tNonlinear inverse problems – The must-do list

a) Identify the observations, its location and noise level.
b) Id tif  th  k  d t i th  i  d  t  id  fi it di i l b) Identify the unknowns and parametrize them in order to consider finite-dimensional 

subspaces.
c) State the direct problem and solve it (F.E.M.).
d) State the inverse problem ... we usually deal with nonlinear inverse problems.
e) Decide how to evaluate the sensitivity matrix: 

“discretize-then-differentiate” or “differentiate-then-discretize”
f) Determine the regularization parameter (a monotically decreasing sequence) and 

the regularization matrixes.
g) Decide the convergence criterion / stopping rule 

(the discrepancy principle).
h) Think about useful a priori information to enhance regularization.
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Examples on phase change problems
Phase Change and Element birth and death problem:  During a twelve day period  Phase Change and Element birth and death problem:  During a twelve day period, 
concrete is added to a hole previously drilled into rock. At the beginning of each 4 day interval, a 5 
meter depth of concrete is poured. As the concrete
solidifies, internal heat is generated as the water 
and cement in the concrete react and this heat is and cement in the concrete react and this heat is 
conducted into the surrounding rock and convected
to the surrounding atmoshpere.  Calculate the 
temperature distribution in the concrete and 
surrounding rock as a function of time  An surrounding rock as a function of time. An 
axisymmetric analysis is appropriate here. There is
a change in the concrete volume and heat transfer
surface area as the concrete is added.
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Examples on phase change problems

Exercise 2:  Considering an environmental temperature of -20ºC, calculate how 
much time is it necessary to solidify a 1m x 1m x 1m block of 20ºC 
water. All points in the block must be at most at -5ºC after solidifying.
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