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Collapse and post-collapse behavior of steel

pipes under external pressure and bending. 

Application to deep water pipelines.
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Introduction: the technological problem

Collapse and post-collapse behavior of steel pipes: Finite Element

Models

Collapse of deepwater pipelines under external pressure plus bending.

Validation: numerical vs. experimental results

Collapse of deepwater pipelines with buckle arrestors. Validation:

numerical vs. experimental results

UOE pipe manufacturing process

Agenda
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Technological Problem
Deep Water Installations

Risers

Flow lines
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Construction Techniques
S-lay barge pipeling J-lay barge pipeling

S-lay takes its name from the suspended shape of the pipe at the end of the barge, 

which lays in an elongated "S" from the stringer to the seabed.

For the J-lay,  the suspended pipe forms a "J" from the vessel to the seabed.



Reel-lay method: the pipe is assembled onshore and wound onto a

large reel on the vessel; before to be J-laid on its final location it has

to be unwound and straightened.
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Construction Techniques
Reel-lay barge pipeling
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Failure Modes
Global buckling

(buckling of the pipe as a bar in compression column mode)

Lateral buckling Upheaval buckling

Internal pressure Destabilizing effect

Palmer A.C. (1974), "Lateral Buckling of Axially Constrained Pipelines"

Dvorkin E.N. and Toscano R.G. (2001), "Effects of external/internal pressure on the global buckling of 

pipelines“.
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Failure Modes

Local buckling

Structural collapse of steel tubes under external pressure

Physical phenomenon to be studied in

this course using numerical models
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Buckle Arrestor

Collapse propagation pressure: The lowest
pressure which can sustain a propagation
buckle (Andrew Palmer)

Crossover pressure : The minimum pressure
value at which the buckle crosses over the
arrestor
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Agenda

Introduction: the technological problem

Collapse and post-collapse behavior of steel pipes: Finite Element Models

Collapse of deepwater pipelines under external pressure plus bending

Validation: numerical vs. experimental results

Collapse of deepwater pipelines with buckle arrestors. Validation: 

numerical vs. experimental results

UOE pipe manufacturing process
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2D Continuum Mesh
Two dimensional finite element model of very long pipes

720 QMITC elements
1572 d.o.f.

 

OD 245.42 mm 

Wall thickness 12.61 mm 

Ovality 0.18% 

Yield stress 890 MPa 

Theoretical pcr 64.36 MPa 

Dcr

ltheoreticacr

p

p

2

 
 

0.992 

 
Qualification of  2D continuum elements model , Rs=0.

(Timoshenko)

Total Lagrangian formulation.

QMITC plane strain element (4-noded element) (Dvorkin-Vassolo)

Automatic solution of the incremental nonlinear finite element equations (Riks method).

 Elasto-plastic material model: von Mises associated plasticity with isotropic hardening.

 Geometrical nonlinearity: large displacements / rotations but small strains.

 ADINA code (special version)

Follower loads

Residual stresses: linear distribution trough the thickness



Direct collapse behavior Inverse collapse behavior 
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2D Continuum Mesh
Eccentric pipes
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2D Continuum Mesh
Parametric analyses

720 QMITC elements
1572 d.o.f. 100(%)

average

minmax

D

DD
Ov

100(%)
average

minmax

t

tt
Ecc

Eccentricity effect

Ovality effect Residual stress effect
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3D Finite Element of the Collapse and Post-

collapse of very long pipes under Bending + 

external Pressure

pipe central slice

D=1.2522”
D/t=35
Sy=31.5 kg/mm2
E/Sy=225
E/Et = 86.5
Ov = 1.6%

MITC4 shell element (4-noded element that includes shear deformation) (Dvorkin and Bathe)

Automatic solution of the incremental nonlinear finite element equations. .

Elasto-plastic material model: von Mises associated plasticity with isotropic hardening.

Geometrical nonlinearity: large displacements / rotations but small strains.

ADINA code

Follower loads

Residual stresses: linear distribution trough the thickness

n

n

n

z

y x
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3D Finite Element Model of very pipes
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3D Finite Element Simulation of the Slit-

ring Test (industrial standard test)

9 5/8" OD 47 lb/ft P110

)1(4 22R

Eta
R

Long samples

24 R

Eta
R Short samples

R=0.2 y

a (opening)

After slitting.

Lateral view.

Before and after slitting. Front view.
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Agenda

Introduction: the technological problem

Collapse and post-collapse behavior of steel pipes: Finite Element

Models

Collapse of deepwater pipelines under external pressure plus 

bending. Validation: numerical vs. experimental results

Collapse of deepwater pipelines with buckle arrestors. Validation: 

numerical vs. experimental results

UOE pipe manufacturing process
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Test specimens

Ovality=(OD_max.-OD_min.)/OD_av.

Eccentricity=(t_max.-t_min.)/t_nominal

Combined Pressure and 

Bending Set-up
Deepwater Experimental
Chamber (cut-away view)

Hydraulic 
Actuators

Pipe 
Specimen

Welded End Caps

Moment Applying End Plates

Tension
Strut

Compression
Strut

 

Collapse and Propagation Tests
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1 7782 353.1 22.07 16.0 0.39 0.053 Collapse
2 7784 352.9 22.04 16.0 0.40 0.050 P B
3 7871 353.0 21.84 16.2 0.41 0.069 P B
4 7549 325.0 18.37 17.7 0.20 0.097 Collapse
5 7673 325.0 18.32 17.7 0.17 0.067 P B
6 7548 325.2 18.18 17.9 0.21 0.051 P B
7 7550 323.4 21.17 15.3 0.23 0.066 Collapse
8 7672 323.7 21.11 15.3 0.25 0.088 P B
9 7547 323.8 21.14 15.3 0.20 0.081 B P
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Acquisition of the OD “shape”
(IMS, Imperfection Measuring System or “ shapemeter”)

Algorithm to process the data

acquired with the LVDT

1

( ) cos( ) sin( )
N

o j j

j

r R a j b j

(Ro is the best-fit circle radius )

Each specimen was divided in sections located a few

millimeters

apart. For each section, the circle that best fits the section’s

outer surface was determined. Using the best-fit circle center,

any point on the outer surface can be located with a radius and

an angle,
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Amplitude:

The imperfection that controls the value of the 

collapse pressure is the second mode.

* Assanelli A.P., Toscano R.G., Johnson D. and Dvorkin E.N. (2000), "Experimental / numerical analysis of the collapse behavior of 

steel pipes“

Yeh and Kyriakides S ; Arbocz, J. and Babcock, C.D. ; Arbocz, J. and Williams, J.G. 

(Fourier decomposition)
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Mapping of the wall thickness
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3D Finite Element Model

MITC4 shell element (4-node element that includes shear deformation)

ADINA code.

Automatic solution of the incremental nonlinear finite element equations (Riks

method).

Elasto-plastic material model: von Mises associated plasticity with isotropic

hardening, with the yield stress corresponding to the samples hoop yield stress

in compression. In this model we neglect the plastic anisotropy of the

material.

Geometrical nonlinearity: large displacements / rotations but small strains.

Contact elements on the pipe inner surface in order to prevent its inter-

penetration in the post-collapse regime.

Geometry described by the OD mapping and by the thickness distribution.

Circumferential residual stresses obtained experimentally.
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FST and FEA results for pipes under external

pressure only. Pre and Post – collapse

equilibrium paths
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experimental results (solid line)
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External pressure 1.20 kg/mm2

Photo of Pipe After Testing

A B

A B

A B

A B

Sample 4

In the experimental test, after collapse the chamber is abruptly depressurized and water 

must be pumped to regain pressure.  Hence, the experimental path is different from the 

numerical one, which better represents the undersea conditions.
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FST and FEA results for Pressure Bend Tests
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Summary: Numerical vs. Experimental Results
Sample 1 2 3 4 5 6 7 8 9

Pc FEA / 

Pc exp 

Pprop FEA / 

Pprop exp  

Mc FEA / 

Mc exp  
--0.972 0.998 -- 0.998-- 1.047 1.088 --

0.964

0.87 -- -- 0.89 -- -- 0.99 -- --

-- -- 1.103 --0.977 -- -- 0.966

The agreement between the finite element predictions and the laboratory

observations, both in the pre- and post-collapse regimes is excellent; hence,

the finite element models can be used as a reliable engineering tool for

analyzing the effect of different imperfections, and of residual stresses, on the

collapse and collapse propagation pressure of steel pipes.
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Agenda

Introduction: the technological problem

Collapse and post-collapse behavior of steel pipes: Finite Element Models

Collapse of deepwater pipelines under external pressure plus bending. 

Validation: numerical vs. experimental results

Collapse of deepwater pipelines with buckle arrestors. Validation: 

numerical vs. experimental results

UOE pipe manufacturing process
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Tested Samples

1

2

3

4

h=arrestor thickness

t= pipe thickness

La=arrestor length

D=pipe external diameter

 

Tenaris

Siderca lab.

flattening mode flipping mode 
*Kyriakides S., Park T.D. and Netto T.A. 
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Geometrical Measurements
Sample 1: T-15665 - 1 & 2
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Validation: Numerical vs. Experimental 

Response

(* MITC4 with a posteriori 

thickness update – ADINA)

Flattening_pstrain.avi


29
www.simytec.com

Validation: Numerical vs. Experimental 

Response
Infinitesimal or finite strains 
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flipping mode 

Flipping2_pstrain.avi
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Summary:  Numerical vs. Experimental 

Response

Sample
Collapse pressure: 

FEA_finite strain/lab

Crossover pressure: 

FEA_finite strain/lab.
Mode

1 0.924 1.004 Flattening

2 0.928 0.985 Flattening

3 0.951 0.926 Flipping

4 0.852 0.883 Flipping

The two collapse modes reported in the literature, the flattening and the flipping mode, were identified

in our simulations.

The agreement between the finite element predictions and the laboratory observations, both for the

collapse and cross-over pressure, is very good; hence, finite element models can be used as a reliable

engineering tool to assess the performance of integral ring buckle arrestors for steel pipes.
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Agenda

Introduction: the technological problem

Collapse and post-collapse behavior of steel pipes: Finite Element Models

Collapse of deepwater pipelines under external pressure plus bending. 

Validation: numerical vs. experimental results

Collapse of deepwater pipelines with buckle arrestors. Validation: 

numerical vs. experimental results

UOE pipe manufacturing process



32
www.simytec.com

UOE pipe manufacturing process

(Tenaris Confab-Brazil)

uoe.WMV
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UOE process: 2D numerical model
The described cold forming process introduces residual

stresses and plastic deformations that, due to the

Bauschinger effect, reduce the yielding stress of the steel

for compressive loading the cold forming processes

reduces pipe collapse strength.

2D Finite element model

Q1-P0 plane strain element.

ADINA code.

Large displacements/rotations but small strains.

Elasto-plastic bi-linear material model.

Von Mises plasticity with kinematic hardening.

The forming tools are modeled as rigid bodies.

Sliding nodes contact algorithm to simulate the

contact between the tools and the plates.
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Results

Edge Press “U” Press “O” Press Expansion

16” OD x 0.5” Wt X60
Hardening 1%

Accumulated effective plastic strains evolution [%] 
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Results
Detrimental Effect= PC_virgin_mat - Pc_UOE

20” OD x 0.75” WT X80

D/t=26.7

OP: Outside Perimeter measured as the sum of 

node to node distances.

One very important conclusion from this study is that the deterioration of the collapse

pressure diminishes as the compression ratio increases.

* Herink M., Kyriakides S., Onoufriou A. and Yun H.
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