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SUMMARY 

An incremental Total Lagrangian Formulation for curved beam elements that includes the effect of large 
rotation increments is developed. A complete and symmetric tangent stiffness matrix is obtained and the 
numerical results show, in general, an improvement over the standard formulation where the assumption of 
infinitesimal rotation increments is made in the derivation of the tangent stiffness matrix. 

1. INTRODUCTION 

The development of structural finite elements (beam and shell elements) for non-linear analysis 
and the development of solution methods for non-linear problems is a very active research field 
because the non-linear analysis of structures is an engineering application continuously deman- 
ding more efficient, robust and above all reliable numerical tools. 

The elements with C0 continuity, derived from the Ahmad, Irons and Zienkiewicz shell 
element1 appear to be the most suitable ones and the majority of the latest developments in the 
field take this element as a starting point (e.g. References 2-8). 

In the development of elements for geometrically non-linear analysis, the consideration of large 
rotations introduces additional difficulties due to the non-vectorial nature of finite rotations. 

In this paper we concentrate in the geometrically non-linear formulation for C0 curved beam 
elements (also isoparametric beam elements or Timoshenko beam elements). 

A derivation of the C0 beam element is presented by Bathe in Reference 9, and an extensive 
derivation of the kinematics of large rotations is presented by Argyris in Reference 10. 

In the standard geometrically non-linear formulation for C0 beam elements the tangent 
stiffness matrix is derived assuming infinitesimal rotation increments (rotation increments line- 
arization) and the effect of large rotation increments is considered only during the equilibrium 
iterations, when calculating the stresses. 

Different formulations that take into account the effect of finite rotation increments on the 
resulting stiffness matrices have been presented by Surana ,I1 by S i m ~ , ' ~  Simo and Vu Quoc13 
and by Oiiate.14 

In this paper, we develop an incremental Total Lagrangian Formulationg for C0 curved beam 
elements with finite incremental rotations. This formulation, 
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(a) includes in the linearization of the equations of motion all the terms that can be considered 
in a tangent formulation, providing therefore a complete tangent stiffness matrix; 

(b) leads to symmetric stiffness matrices. 

Numerical results show that, in general, the complete tangent stiffness matrix provides a faster 
convergence during equilibrium iterations than the stiffness matrix obtained with the standard 
formulation. 

2. KINEMATICS O F  THE TIMOSHENKO BEAM ELEMENT 

In this Section we review the kinematics of C0 beam elements with rectangular cross section and 
N nodes along its axis (see Figure 1). 

For the initial geometry of the beam element (t =0) we define its axis by means of N nodes of 
global co-ordinates Ox:; k =  1, . . . , N and i =  l ,2,3. 

We make use of Bathe's notation, therefore a superscript 0 indicates that the quantity is 
measured in the configuration at t =0.9 Also, at each node we define the orthonormal system 
(OV,, OV,, OV,), where OV, is tangent to the element axis (t =O). 

Defining the natural co-ordinate system (r, s, t),9 the position vector of any point inside the 
beam element is 

Figure 1. N-node curved beam element 
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where the hk(r) are the 1D interpolation  function^.^ 
The deformation hypothesis is that the orthonormal systems (OV;, OV;, OV:) rotate without 

deformation, hence 

(a) a straight line normal to the beam axis at t=O remains straight during the beam 
deformation but not necessarily normal to the deformed axis (shear deformations are 
considered); 

(b) the cross section of the beam is not deformed (therefore this formulation cannot model 
large strain situations). 

At any time t, the position vector of the ( f ,  s, t) point in the isoparametric beam element is 

The displacement vector of the same point, corresponding to the configuration at time t is, 

Using (1) and (2) in (3) we obtain 

where 'uk is the displacement vector of node k, at time t. 
Since the orthonormal system at node k rotates, 

where ;Rk is the rotation matrix corresponding to node k, at time t and referred to the initial 
configuration. 

The rotation of the orthonormal system at node k can be described by a vector1' 

where 'ek is a unit vector in the direction of the rotation axis. 
Studying this rotation, Argyris arrived at (Reference 10, equation (16)) 

where 

Note that the be: are not independent rotations around the global axes but are the components of 
the matrix defined in equation (8), which characterizes a rotation around the axis 'ek. 
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In a very elegant way, Argyris proved that equation (7) can be rewritten as (Reference 10, 
equation (3 1)) 

where I, is a (3 x 3) unit matrix. 
The incremental displacement from the configuration at time t to the configuration at time 

t + At is, 

,,='+&X-'X 

Therefore, 

Since to go from the configuration at time t to the configuration at time t + At the orthonormal 
system at node k is only rotated, 

t +q: = t + & ~ k y k  t 
I 

Using equation (9), 

where 
o -e: e: 

ek=[_., ; -::I (14) 

again, the 8: are not independent incremental rotations around the global axes but a n  the 
components of the matrix detined in equation (l4), which characterizes via equation (13) the 
incremental rotation at node k. 

Note that, if the incremental rotation is infinitesimal, equations (12) to (14) produce, keeping in 
equation (13) only the linear terms 

where [8'lT=[8: 0: O i l .  In this case the 8: are independent infinitesimal incremental 
rotations around the three global axes. 

Because the incremental rotations are finite we keep in (1 3), in a first attempt, only the linear 
and quadratic terms. 

Therefore, 
'+&Vf -'vf =)Ltv:+ +@k@"Vk 

~ + ~ v : - t y : = @ k t y : + ~ @ k ) L t y :  
(16) 

which can be rewritten as 
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The incremental displacement of any point (r, s, t) inside the beam element is 

We can write, 

where us are the terms obtained considering only infinitesimal rotation increments, i.e. using 
equation (15) (standard linearization), and u,, are the extra terms obtained using equation (17). 

Hence, 

and 

At any time t, the covariant basis of the convected system (r, s, t )  are1' 

The covariant components of the Green-Lagrange deformation tensor in the configuration at 
time t, referred to the configuration at t  = O  and measured in the convected system are1' 

&,; dc, and d$, are zero because of our deformation hypotheses. 
Using the contravariant base vectors1' we represent the Green-Lagrange strain tensor 

BS2-4, 16 

;E = ;grogr O g  + ;&s[Og OgS + OgsOgl + cogr Og' + OgtOg] (24) 

Note that, for a beam element with constant (a,, bk), the vectors (Og, Ogs, Og,), form an orthogonal 
basis for any point inside the beam. 

In the incremental step from t to t +At, 



Therefore, using equations (23) and (25), 

Using equation (19) we rewrite equations (26), keeping only up to the quadratic terms in 
generalized incremental displacements. 

The extra terms with respect to the standard formulation are the underlined ones in equations 
(27). 

We can decompose the strain increment in two parts; one part has all the linear terms in 
generalized displacements (oZij), the other part has all the quadratic terms in generalized 
displacements Therefore, 

Note that 

(a) In elements with no rotational degrees of freedom (e.g. 2D and 3D continuum elements) 
equation (28) represents exactly the total strain increments. In our case equation (28) 
represents only an approximation to the strain increments, because in the derivation of 
equation (27) we neglect the terms of order higher than two in generalized displacement 
increments." 

(b) Equations (27) contain all the terms up to the second order in generalized displacement 
increments. This guarantees a complete quadratic form of the incremental energy, leading 
therefore to a complete expression of the tangent stiffness matrix. 

3. PRINCIPLE O F  VIRTUAL WORK 

For the equilibrium configuration at time t + At (the one being sought) the principle of virtual 
workg. Isstates P 
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where O V is the volume in the initial configuration (t =O), '+%@ are the contravariant compo- 
nents measured in the convected system of the 2nd Piola-Kirchhoff stress tensor9* l 6  and '+A'W is 
the virtual work of the external loads acting on the configuration at time t +At. 

When calculating '+A'&? it is important to notice that, although we are considering finite 
incremental rotations, the 6$ are infinitesimal, therefore the virtual work of the applied moments 

NN 
is directly given by 1 M168: where NN is the total number of nodes in the model. 

k =  1 

Working out equation (29) the linearized equations of motion are obtained (Reference 9, 
Chapter 6). 

4. INCREMENTAL FORMULATION FOR THE TIMOSHENKO BEAM ELEMENT 

Using the kinematic equations presented in Section 2, we develop in this section the incremental 
Total Lagrangian Formulation9 for the Timoshenko beam element. 

With the Newton-Raphson iteration scheme9 the equations for the ith iteration in a finite 
elements model are 

For the displacements, 

and for the rotations 
( 1  +A:~k)(i) = (A t +A;~k)(i)(t +A;~k)(i- 1) 

In the above 
'+aofK, is the linear part of the tangent stiffness matrix, 
'+%KNL the non-linear part of the tangent stiffness matrix, 
U the vector of generalized nodal incremental displacements, 

the vector of generalized external nodal loads acting at t + At 
and 

'+aofF the vector of generalized internal nodal loads acting at t + At, equivalent (in the virtual 
work sense) to the element stresses. 

4.1. Tangent stzflness matrix 

We define a vector 

and the usual relation9 

The matrix bBL is derived using equations (27) and (28). 
From the linearized equations of motion (Reference 9, Chapter 6) we obtain, 

where ,C is a constitutive matrix formed with the contravariant components ,e'ik' of the 
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constitutive tensor that relates the increments of the contravariant components of the 2nd 
Piola-Kirchhoff stress tensor, measured in the convected system (,pi), with the increments of the 
covariant components of the Green-Lagrange strain tensor also measured in the convected 
system (,Eij). The incremental constitutive equation is, in matrix notation, 

where 

and 

The curvilinear components ,Cijk' are calculated from the components in an orthonormal system 
(e*,, &j, kk):, 

For elements of constant (a,, b,) we can define an orthonormal system Ci= Ogi/ 11 Ogi 11, and 

where E is the Young's modulus, G is the shear modulus and K is the shear correction f a ~ t o r . ~  
The linear part of the tangent stiffness matrix, as defined by equation (33), is the same for our 

formulation and for the standard formulation. The difference will appear only in the non-linear 
part of the tangent stiffness matrix. 

We derive the non-linear part of the tangent stiffness matrix from the equality (Reference 9, 
Chapter 6) 

6UTbK,,U = b ~ i 6 0 i i j  'd V (39) 

We define now the following matrices: 

and also, 
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Matrices Br, 8,, 1, can be easily obtained using the kinematic relations presented in Section 2. 
Matrices $2, . . . , bni arise from the underlined terms in equations (27). 

Being ki and k, the degrees of freedom corresponding to 8: and 8:; k- 1, . . . , N and i, 1= 1 , 2 ,  
3, the only non-zero terms in those matrices are 

S 
f k t  t k t  b B : r ( k i ,  k0=8 hk, rakCtV:(l) fgr(i)  + Vs(i) gr( l ) - (  Vs g r ) ( d i , +  a,)] 

t 
f k t  +ih, rbkC vt(l) &a) + tv:(i)tgr(l) -Cv: ' g r ) ( d i ~ +  d z i ) ]  (42a) 

S t k t  t k t  
iP[:(kiy k l ) =  8 hk, rak[tv:( l) 'gs( i)+ vs(i) gs( l ) - (  V s  ' g s ) ( d i l  + d l i ) ]  

t t k t  
+ ghk. r b k  C 'V:I )~~.~)  + Vt(i) gs(l1 - ( ' V : .  ' g s ) ( d i 1  + d l i ) ]  . (424 

S t k t  t k t  t k t  
6 ' 3 4 9  k l )  = 8 hk, rak 1 Vs(,) + vs(i) gta -( V s  g r ) ( d i 1  + d l i ) ]  

where dij is the Kronecker delta. 
It is important to point out that the above defined matrices are symmetric. From equations ( 3 9 )  

to ( 4 2 )  

Note that 

(a) The tangent stiffness matrix, dK = ;KL + ,'KNL is symmetric. 
(b) The second integral in equation ( 4 3 )  represents the difference with the tangent matrix as 

obtained with the standard formulation. 
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4.2. Internal forces 

The vector of generalized internal nodal forces equivalent in the virtual work sense to the 
element stresses is9 

For calculating the stresses, the vectors 'V: and 'V: are updated using equation (7). 

5. NUMERICAL EXPERIMENTATION 

In this section we will compare for some simple examples the results obtained using the standard 
formulation and using the formulation presented in this paper. In order to avoid the locking 
problem,19 reduced numerical integration will be used along the r-direction. 

It is important to point out that in beam elements reduced integration does not produce 
spurious zero energy modes,20 and therefore does not raise objections from the reliability view 
point.4 

Full Newton-Raphson iterations are used in all the examples and the energy criteriong. 21 is 
used to test for convergence. Therefore, we stop the iterations when 

where ETOL is an error tolerance defined for each case. 

5.1. Cantilever beam under constant moment 

5.1.1. Analysis using 2-node elements. The cantilever is analysed using four 2-node elements, as 
shown in Figure 2. The total moment of 271, which for our case (EIIL = 2) corresponds to a total 
tip rotation of 71, is applied in 10 equal steps. Our formulation needs a total of 33 iterations to 
converge, against 92 iterations of the standard formulation. The coding differences for both 
formulations are very minor, therefore the number of iterations can be considered as an 
approximate indicator of the computational efficiency. 

5.1.2. Analysis using 3-node elements. In the example shown in Figure 3 four 3-node elements 
are used. A total moment of 1.871 EIIL is applied in 10 steps, as indicated in the figure. Suranal 
also analysed this problem. 
In Figure 3 we display our results and the results reported in Reference 11; it is worth pointing out 
that, since different convergence criteria were used, the comparison of the number of iterations 
used by each formulation is not necessarily indicative of the effectiveness of each formulation. 

5.2. Simply supported beam under constant moment 

The beam is analysed using five 3-node elements, as shown in Figure 4. A total moment of 2.0 
(which corresponds to a relative rotation of the beam ends of 2.5571) is applied in 10 equal steps. 
Our formulation needs a total of 44 iterations to converge against 151 iterations of the standard 
formulation. 

Suranal and Oliver22 also analysed this problem. In Figure 4 we display their results and the 
present results. Again, different convergence criteria were used in the three cases and the 
comparison is not straightforward. 
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Section 

Number of Iterations 

Standard 
Step M formulation This work 

Total Iterations 92 33 
. " P- - .. . " 1 d C  I 

Figure 2. Analysis of a cantilevcrbnrter constant m o m e n t - ~ - 2 . ~  elements 

5.3. Bend (45-degrgq) under cpncentrated load 

The curved beam loaded Mmal to its plane is a n a l y s ~ s i n g  five 3-node elements, as shown in 
Figure 5. The total load of g00.Q id applied in 10 equal steps. The results are compared with those 
obtained by Bathe and Bol0urch3.~~ 

In this case the standard formulation and our formttktion both use approximately the same 
number of iterations. 
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Sect ion 

Total tip disp. (Surana) [l'l] * Total tip disp. (This work) Iterations Iterations * Total tip disp. (Analit.) Total tip disp. (Analit.) (Surana) Clll (This work) 

Figure 3. Analysis of a cantilever under constant moment using 3-node elements 

3 *ion 

Figure 4 
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Number of Iterations 

Standard 
M formulation This work 

Total Iterations 151 44 

M V(Surana) Clll Iterations V(Oliver) C221 Iterations V(This work) Iterations 
V(Ana1it.) (Surana) [ 1 11 V(Ana1it.) (Oliver) C221 V(Ana1it.) (This work) 

2.0 1.01 7 1.01 4 1.01 5 

Figure 4. AnafysEda $RnpEy$upported beam under constLnt m o m l t  
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Linear Elastic Materid 

section 

Bathe-Bolourchi Standard 
C231 formulation This work 

U/TIP - 13.4 - 13.3 - 13.6 

V/TIP - 23.5 - 23-7 - 23-5 

W/TIP 53.4 53.2 53.3 

Total number of iterations for the standard formulation=35 
Total number of iterations for the present formulation = 34 

Figure 5. Analysis of a 45-degree bend 

5.4. Closed frame under concentrated loads 

The frame shown in Figure 6 is analysed, modelling one quarter of it with twenty equal 3-node 
elements. The total load is applied in 5 and 10 equal steps. The displacements corresponding to 
the total load are compared with the results obtained by Wood.24 

In this case, again, the standard formulation and the new one both need approximately the 
same number of iterations to converge. 

6. CONCLUSIONS 

An incremental Total Lagrangian Formulation for curved Timoshenko beam elements that 
includes the effect of large rotation increments was developed. A symmetric tangent stiffness 
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matrix was obtained because, as stated above, our nodal variables are three numbers that define a 
rotation rather than independent rotations around fixed axes. Therefore the commutativity 
problem which leads to non-symmetric tangent stiffness matrices25 does not arise. It is important 
to notice, however, that our nodal variables are coincident with independent rotations around 
fixed axes in the case of infinitesimal rotations. 

The advantages of the new formulation over the standard formulation, that assumes infinitesi- 
mal rotation increments in the tangent stiffness matrix derivation, are as follows. 

(a) The tangent stiffness matrix obtained with the new formulation derives from a complete 
linearization of the virtual work equations, therefore it does not introduce errors in stability 
analyses (linearized buckling analyses.26) 

Linear Elastic Material 

Total number of iterations 

Standard 
Number of steps formulation This work 

5 23 24 

This work 
Wood 
1241 5 steps 10 steps 

H -241.00 -235.19 - 24023 

Figure 6.  Analysis of a closed frame 
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(b) The complete tangent stiffness matrix assures quadratic convergence in the displacements 
norm when using full Newton-Raphson  iteration^,^' therefore, in many cases when using 
the new formulation convergence is achieved with fewer iterations than when using the 
standard formulation. It is well known, however, that this should not always be the case, 
because in some problems iterating with a 'non-exact' tangent matrix may lead to a faster 
convergence. Also, some type of secant f~rmulation'~ could be developed to improve the 
efficiency of the analyses. 

The same kind of formulation we presented for beam elements can be developed for C0 shell 
elements. 
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