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Summary

The formulation of general shell elements using the method of mixed interpolation of tensorial components
(MITC) is reviewed. In particular three elements that were formulated using the MITC method are examined:
the MITC4 and MITC8 that were developed for general nonlinear analysis under the restriction of small
strains and the MITC4-TLH that was developed for finite strain elasto-plastic analysis of shells.

1. INTRODUCTION

In 1970 Ahmad, Irons and Zienkiewicz [1,2] established the bases on which, most of the
work that has been done since then on finite element analysis of shell structures,was built:
they published the isoparametric shell element with independent C◦ interpolations for
displacements and rotations. From now on we will refer to this element as the A-I-Z shell
element.

The most relevant aspect of the A-I-Z shell element is that the interpolation functions
require only C◦ continuity. However the price for this low order continuity requirement
is the introduction of shear deformations in the formulation. This elements are therefore
generically known as Reissner / Mindlin shell elements [3,4].

The A-I-Z shell element was very naturally developed from the 3D continuum isopara-
metric element formulation via the imposition of kinematic constraints [2].

Even though the introduction of shear deformations in the formulation seems to be
desirable for the analysis of thick shells, and also makes very natural the transition from 3D
to shell elements [5,6], these shear deformations cause the main numerical difficulty of the
A-I-Z element: the locking phenomenon [2,6].

The extension of the A-I-Z shell element for nonlinear analysis (small strains) was
independently developed by Ramm [7] and by Kr̊akeland [8].

In Section 2 we will review the A-I-Z shell element formulation, its locking problem and
the first remedies that were proposed to relieve it: reduced / selective numerical integration
schemes. In that Section we will also review the drawbacks of those remedies.

Most of the research developed in the area of finite element analysis of shells since 1970
has been devoted to elements that while being based on the A-I-Z element try to overcome
the locking problem.

In this paper we will concentrate on the method of mixed interpolation of tensorial
components (MITC) introduced by Bathe and Dvorkin [9-13].

In Section 3 we will review the linear formulations of the MITC4 and MITC8 shell
elements, while in Section 4 we will comment on the material and geometric nonlinear
formulation restricted to small strains of the above elements. In Section 5 we will review
the formulation that we recently developed for finite strain elasto-plastic analysis of shells
using the MITC4 shell element.
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2. THE AHMAD-IRONS-ZIENKIEWICZ SHELL ELEMENT

A typical A-I-Z shell element is depicted in Figure 1. In order to define its configuration at
a given time (load level) t we use [6]:

• The coordinates of the mid-surface nodes referred to a global Cartesian system
{txi , i = 1, 2, 3}, with base vectors tei.

• Director vectors defined at the mid-surface nodes. These nodal director vectors are
defined so as to approximate as closely as possible the shell normal at those nodes.

Figure 1. Ahmad–Irons–Zienkiewicz shell element

An arbitrary point inside the shell element is defined by its natural coordinates
{ri , i = 1, 2, 3} and the position vector of that point is given by the following interpolation
[6]

tx = hk(r1, r2) txk +
r3

2
hk(r1, r2) tak

tV k
n (1)

(t = 0 represents the underformed configuration used as reference configuration in what
follows).

In Eqn. (1) we use the summation convention, and:

hk(r1, r2):2D isoparametric interpolation functions corresponding to the k-th mid-surface
node [2,6].

txk: position vector of the k-th mid-surface node at time t.
tak: shell thickness at the k-th mid-surface node at time t.
tV k

n : director vector corresponding to the k-th mid-surface node at time t, defined taking
into account that

∣∣tV k
n

∣∣ = 1.

It is evident that by using the interpolation defined by Eqn. (1) we can model shells of
variable thickness.
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Using Eqn. (1) we can interpolate the geometry of any 3D solid. For the case of shells
the following additional kinematic constraints are introduced [1,2,6]:

• The director vectors remain straight during the deformation process.
• The thickness remains constant during the deformation process (t+Δtak = tak = · · · =
◦ak).

It is evident that the second constraint is only suitable to describe the kinematics of
infinitesimal strain deformation processes (see Section 5).

Considering a linear kinematic description (infinitesimal displacements, rotations and
strains), the rotations can be considered as vectors and, for the incremental displacements
from the configuration at t to a configuration at t + Δt we get

u = t+Δtx − tx = hk uk +
r3

2
hk

tak (−αk
tV k

2 + βk
tV k

1 ) (2)

In the above equation:

uk: incremental displacement of the k-th mid-surface node.

αk , βk: incremental rotations at the k-th mid-surface node around the vectors tV k
1

and tV k
2 .

The auxiliary vectors tV k
1 and tV k

2 are depicted in Figure 1 and are defined as

• If te2 × tV k
n �= 0

tV k
1 =

te2 × tV k
n∣∣te2 × tV k
n

∣∣ (3.a)

tV k
2 = tV k

n × tV k
1 (3.b)

• If te2 × tV k
n = 0

tV k
1 = te3 (3.c)

tV k
2 = te1 (3.d)

Obviously, in a computational implementation we adopt the second definition if∣∣te2 × tV k
n

∣∣ < TOLN where TOLN is some small number.
Please notice that the kinematic description given in Eqn. (2) implies that the formula-

tion considers only 5 d.o.f. / mid-surface node (no drilling d.o.f.).

2.1 The locking problem

In order to introduce the shear locking phenomenon we recourse to a very simple example.
Let us consider a two-node beam element (Fig. 2.a) formulated following the A-I-Z

approach (a Timoshenko beam element because shear deformations are included in the
formulation [6]). The transversal displacement and in-plane rotation interpolations are

u2 = h1 u1
2 + h2 u2

2 (4.a)

θ = h1 θ1 + h2 θ2 (4.b)

The above linear interpolation functions satisfy the C◦ continuity requirement.
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For a very thin shell, the Bernoulli condition has to be fulfilled by the displacements and
rotations

γ =
du2

dx1

− θ ≡ 0 (5)

With the interpolations defined by Eqns. (4), the constraint in Eqn. (5) leads to

θ = const (6)

and therefore in order to satisfy the boundary conditions at node 1 (θ = 0 because the
node is fixed) we must have θ = 0 all over the element: locking behavior.

This shear locking is due to the fact that the functions used to interpolate u2 and θ
cannot satisfy the condition of zero shear strain all over the element.

It is important to notice that the source of the locking problem is the fact that the
interpolation functions are unable to represent a state of pure bending with zero shear
stresses, regardless of the use of finite or exact algebra.

We used a simple two node beam element to present a picture of shear locking. More
rigurously we can study a general plate element [6,14]. The potential energy functional is
for a linear elastic plate element in the (x1 − x2) plane

π =
h3

2

[ ∫
A

κT Cb κ dA + ξ

∫
A

γT Cs γ dA

]
− V (7)

where for a plate lying in the (x1 − x2) plane

κ =

⎡
⎢⎢⎢⎢⎢⎣

∂β
∂x1

−∂α
∂x2

∂β
∂x2

− ∂α
∂x1

⎤
⎥⎥⎥⎥⎥⎦ ; γ = 1

L

⎡
⎢⎣

∂u3
∂x1

− β

∂u3
∂x2

+ α

⎤
⎥⎦

Cb = E
12(1−ν2)

[ 1 ν 0
ν 1 0
0 0 (1−ν)

2

]
; Cs = k E

2(1+ν)

[
1 0
0 1

]

h: plate thickness
L: element length
E: Young’s modulus
ν: Poisson’s ratio
k: shear correction factor [6]
ξ =

(
L
h

)2 −→
h→0 ∞

V : potential of external loads [6].
In the above,

◦V1 = e1 ; ◦V2 = e2 ; ◦Vn = e3

As the plate gets thinner, we can interpret the second integral on the r.h.s. of Eqn. (7)
as a penalty term that imposes the constraint γγγγγγγγγγγγγγ ≡ 0.

Therefore if the interpolation functions cannot represent γ ≡ 0 (Kircchoff-Love hypoth-
esis) ξ will amplify any error in γ as the plate gets thinner, leading to a locking behavior.

In order to introduce the membrane / shear locking [15] we again use a very simple
example. Let us consider the planar curved three-node Timoshenko beam element under
constant bending shown in Figure 2.b.
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Figure 2. Simple problems illustrating the locking phenomenon

The functional of the potential energy is

π =
E I
2

[ ∫ L

0

θ 2
,s ds + ξM

∫ L

0

u 2
s,s ds + ξS

∫ L

0

(un,s − θ)2 ds

]
− V (8)

where L is the length of the curved beam measured along its axis, the s-direction is tangential
to the beam axis and the n-direction is normal to the beam axis.

In the curved beam we use independent interpolations for u1, u2 and θ. As it is well
known we cannot use independent interpolations for un, us and θ because they would not
contain the rigid body modes.

Since, ξM = 12
h2 and ξS = 6 k

(1+ν) h2 it is evident that in a pure bending situation
when the beam gets thinner, the second and third integrals act as penalty terms to impose
the conditions of zero stretching of the beam axis and zero shear strains

εss = us,s = 0 (9.a)

γns = un,s − θ = 0 (9.b)

If we prescribe θi(i = 1, 2, 3) corresponding to the analytical solution of a constant
bending problem, the boundary condition u1

1 = u1
2 = 0 and try to calculate the

remaining displacements by imposing Eqns. (9) at each of the three Gauss points we are
left with a system of 6 equations with three unknowns which in general cannot be solved,
demostrating therefore the combined shear / membrane locking.

In Figure 3 we present some numerical results illustrating on this locking problem.
By a detailed inspection of the results in Figure 3 we can infer that locking is related to

the element ratio (L\h) and not to the structural dimensions [14].

2.2 Reduced / selective integration as a remedy for the locking problem

The use of reduced / selective integration [16] was the first remedy that researchers found
for the locking problem and for a long time it was the only resource that was available for
engineering analyses of shell and plate structures.

However, the introduction of spurious zero energy modes [2,6] in the reduced and selective
integrated element formulations lowers the reliability of their numerical results.

Many examples are reported in the literature illustrating the fact that reduced / selective
integration is not a reliable procedure for engineering analyses. Among them:
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Figure 3. Numerical examples showing locking (A–I–Z elements)

• In Ref. [2, Chapter 11] Zienkiewicz and Taylor present some examples where the use of
reduced integrated elements leads to erroneous results.

• Spurious oscillations in the transverse displacement results corresponding to a thick
circular clamped plate modelled using selective integrated Lagrange elements are reported
by Hughes in Ref. [17, Chapter 5].

• For nonlinear analysis in Refs. [9,13] we report a simple case that shows a spurious
collapse behavior triggered by the spurious modes present in a reduced integrated element
formulation.

It is important to point out that in the previous examples the elements assembly locked
the spurious modes; and therefore the stiffness matrices (the initial stiffness matrix for
the nonlinear case) were non-singular. Hence, the spurious modes present in an element
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formulation can produce undesirable results even if they are restrained by the elements
assembly.

It has been shown by Malkus and Hughes [18] that reduced and selective integration
methods are equivalent to mixed formulations (for the simple case of a two-node Timoshenko
beam element see also Refs. [9,19]). However, in reduced / selective integration methods
once the integration rule is established the mixed formulation is obtained without any
specific control over its performance. Hence drawbacks like the presence of spurious zero
energy modes cannot be avoided except that reduced / selective integration schemes are
used together with some stabilization procedures [20,21].

In the next Section we follow a different approach: a mixed formulation is custom-tailored
to fulfil a criteria that we have established to assure reliable results in finite element analyses
of shell structures (linear and nonlinear).

3. THE METHOD OF MIXED INTERPOLATION OF TENSORIAL COM-
PONENTS

To formulate a shell element using the MITC method we have to go through the following
steps:

(i) Select displacement / rotation interpolations.
(ii) Select strain interpolations.

(iii) Tie both interpolations together at selected sampling points.

By making a proper selection in each of the above items the element designer is able
to custom-tailor the element formulation in order to fulfil her/his expectations on the new
element performance.

By following the above procedure we obtain a non-conforming element, hence Irons’
Patch Test [2,22] is the mandatory tool to legalize the formulation.

3.1 The MITC4 shell element

The four-node MITC4 shell element formulation was designed so as to fulfil the following
reliability criteria [9-13,23]:

• The element should not lock and should not contain spurious rigid body modes.
• The element should satisfy Irons’ Patch test.
• It should be possible to use the element in non-flat geometries (it should be a shell

element rather than a plate element).
• The element should be formulated for general nonlinear analysis. The original formula-

tion [9-11] was developed, like most of the existing shell elements, under the constraint
of small strains. The extension to finite deformations was presented in Ref. [23].

• It should be possible to use the element for the modelling of thin and moderately thick
plates (where the condition of zero stresses through the thickness is still acceptable).

In Figure 4 we present the element description. In that figure g
i
(i = 1, 2, 3) are the

covariant base vectors of the element natural coordinate system.
The geometrical description and kinematics of the element (displacement / rotation

interpolations) are the ones corresponding to the four-node standard A-I-Z shell element
(see Eqns. (1) to (3)).

In the natural coordinate system of the element the strain tensor is written as

εεεεεεεεεεεεεε = ε̃ij gi gj (10)
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Figure 4. MITC4 shell element. Geometrical description

where ε̃ij are the covariant components of the strain tensor measured in the natural
coordinate system and gi are the contravariant base vectors (In Eqn. (10) gi gj indicates
a tensorial product between the two vectors, some Authors use the notation gi ⊗ gj ).

In the MITC4 formulation we selected the following strain interpolations:

• The “in-layer” strain components (ε̃11, ε̃22, ε̃12) are directly calculated from the displace-
ment / rotation interpolations.

• The transverse shear strains (ε̃13, ε̃23) are interpolated using the following functions (see
Fig. 5)

ε̃13 =
1
2

(1 + r2) ε̃13|DI
A +

1
2

(1− r2) ε̃13|DI
C (11.a)

ε̃23 =
1
2

(1 + r1) ε̃23|DI
D +

1
2

(1− r1) ε̃23|DI
B (11.b)
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Figure 5. MITC4 shell element. Transverse shear strains interpolation

In the above equations we indicate with the notation ε̃ij |DI
P the covariant strain com-

ponents calculated at the sampling point P from the displacement/rotation interpolations.
Equations (11) provide non-compatible shear strains, therefore Irons’ Patch Test will

have to be satisfied in order to assure the element convergence [2,22].
At any point inside the element a local Cartesian system with base vectors êi(i = 1, 2, 3)

is defined as shown in Figure 6. In the local Cartesian system the constitutive fourth-order
tensor C is defined by degenerating the 3D constitutive tensor to impose the simultaneous

satisfaction of

σ̂33 = 0 (12.a)

ε̂33 = 0 (12.b)

see Ref. [6] for details.
In the natural coordinate system

C̃ijkl = (gi · êm) (gj · ên) (gk · êo) (gl · êp) Ĉmnop (13)
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Figure 6. Local Cartesian system

hence

σ̃ij = C̃ijkl ε̃kl (14)

where σσσσσσσσσσσσσσ is the Cauchy stress tensor.
In order to assure the convergence of the MITC4 formulation two issues have to be

analyzed: the stability and the consistency of the formulation [24].
Regarding the stability issue the eigenvalues of the stiffness matrices of undistorted and

distorted elements were examined. In all cases, as expected, the elements presented only
the six rigid body modes and no spurious rigid body modes [9,10].

In order to check the consistency of the formulation the Patch Tests shown in Figure
7 were performed. In all cases the transverse displacements, rotations and stresses exactly
agreed with the analytical results [9,10]. An analytical proof that the MITC4 satisfies the
bending Patch Test was presented in our Ref. [12].

Finally it should be noted that the Patch Test is obviously passed by the three possible
membrane loadings.

We have already published extensive numerical experimentation illustrating on the
MITC4 performance in linear analyses [9-13]. In Figures 8 to 10 we reproduce the results
corresponding to a few selected linear benchmark cases.
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Figure 7. MITC4 shell element. Patch tests

3.2 The MITC8 shell element

The eight-node MITC8 shell element formulation was designed so as to fulfil the following
reliability criteria [12-13]:

• The element should not present either shear locking or membrane locking.
• The element should not contain spurious rigid body modes.
• The element should satisfy Irons’ Patch Test.
• The element should have low sensitivity to distortions.

The geometrical description and kinematics of the element (displacement/rotation inter-
polations) are the ones corresponding to the eight-node standard A-I-Z shell element (see
Eqns. (1) to (3) and Figures 11.a and 11.b).

The strain tensor at any point inside the element is written in the natural coordinate
system of the element as:

εεεεεεεεεεεεεε = ε̃rr gr gr + ε̃ss gs gs + ε̃rs (gr gs + gs gr)︸ ︷︷ ︸
in−layer strains

+

ε̃rt (gr gt + gt gr) + ε̃st (gs gt + gt gs)︸ ︷︷ ︸
transverse strains

(15)
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Figure 8. Scordelis–Lo shell (MITC4)

In the MITC8 shell element formulation we use special interpolations for the in-layer and
transverse shear strains.
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Figure 9. Pinched cylinder (MITC4)

3.2.1 In-layer strain interpolation

To avoid membrane locking and obtain an element formulation that does not contain
spurious rigid body modes we use the following in-layer strains interpolation (see Fig. 11.c)

εεεεεεεεεεεεεεILS =
8∑

i=1

h ILS
i εεεεεεεεεεεεεε|ILS

i (16.a)
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Figure 10. Circular plate with constant temperature gradient through the thickness
(MITC4)
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Figure 11. (MITC8) shell element
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The interpolation functions h ILS
i are obtained from the classical serendipity interpola-

tion functions for a square domain (−1 ≤ r, s ≤ 1) [2,6] by replacing the variables “r” and
“s” with “r\a” and “s\a” respectively, where a = 1√

3
.

For i = 1 to 4 we use

εεεεεεεεεεεεεε|ILS
i = ε̃rr gr gr |DI

i + ε̃ss gs gs |DI
i + ε̃rs (gr gs + gs gr) |DI

i (16.b)

where ε̃lm gl gm |DI
i is directly calculated from the geometry and kinematics interpolation

at the i-th sampling point (Fig. 11.c).
For i = 5 and i = 7 we use

εεεεεεεεεεεεεε|ILS
5 = ε̃ss gs gs |DI

5 +
{
g

r
·
[
1
2
(
εεεεεεεεεεεεεε|DI

1 + εεεεεεεεεεεεεε|DI
2

) ] · g
r

}
gr gr |DI

5 +{
g

r
·
[
1
2
(
εεεεεεεεεεεεεε|DI

1 + εεεεεεεεεεεεεε|DI
2

) ] · g
s

}
(gr gs + gs gr) |DI

5

(16.c)

εεεεεεεεεεεεεε|ILS
7 = ε̃ss gs gs |DI

7 +
{
g

r
·
[
1
2
(
εεεεεεεεεεεεεε|DI

3 + εεεεεεεεεεεεεε|DI
4

) ] · g
r

}
gr gr |DI

7 +{
g

r
·
[
1
2
(
εεεεεεεεεεεεεε|DI

3 + εεεεεεεεεεεεεε|DI
4

) ] · g
s

}
(gr gs + gs gr) |DI

7

(16.d)

where

g
s
≡ g

s
; g

t
≡ g

t
; g

r
= g

r
− α g

s
; α =

grs

gss

(16.e)

For i = 6 and i = 8 we use

εεεεεεεεεεεεεε|ILS
6 = ε̃rr gr gr |DI

6 +
{
g

s
·
[
1
2
(
εεεεεεεεεεεεεε|DI

2 + εεεεεεεεεεεεεε|DI
3

) ] · g
s

}
gs gs |DI

6 +{
g

r
·
[
1
2
(
εεεεεεεεεεεεεε|DI

2 + εεεεεεεεεεεεεε|DI
3

) ] · g
s

}
(gr gs + gs gr) |DI

6

(16.f)

εεεεεεεεεεεεεε|ILS
8 = ε̃rr gr gr |DI

8 +
{
g

s
·
[
1
2
(
εεεεεεεεεεεεεε|DI

1 + εεεεεεεεεεεεεε|DI
4

) ] · g
s

}
gs gs |DI

8 +{
g

r
·
[
1
2
(
εεεεεεεεεεεεεε|DI

1 + εεεεεεεεεεεεεε|DI
4

) ] · g
s

}
(gr gs + gs gr) |DI

8

(16.g)
where

g
r
≡ g

r
; g

t
≡ g

t
; g

s
= g

s
− β g

r
; β =

grs

grr

(16.h)
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3.2.2 Transverse shear strain interpolations

To avoid shear locking and obtain an element formulation that does not contain spurious
rigid body modes we use the following interpolations for the transverse shear strains (Figs.
11.d and 11.e).

ε̃rt gr gt =
4∑

i=1

h RT
i ε̃rt gr gt|DI

i + hRT
5

(
ε̃rt|DI

RA + ε̃rt|DI
RB

)
gr gt|DI

5 (17)

where

hRT
1 =

1
4

[
1 +

r

a

]
(1 + s) − 1

4
hRT

5

hRT
2 =

1
4

[
1 − r

a

]
(1 + s) − 1

4
hRT

5

hRT
3 =

1
4

[
1 − r

a

]
(1− s) − 1

4
hRT

5

hRT
4 =

1
4

[
1 +

r

a

]
(1− s) − 1

4
hRT

5

hRT
5 =

[
1 − (

r

a
)2
]

(1− s2)

(18)

In the above a = 1√
3

.

Similarly

ε̃st gs gt =
4∑

i=1

hST
i ε̃st gs gt|DI

i + hST
5

[
1
2
(
ε̃st|DI

SA + ε̃st|DI
SB

) ]
gs gt|DI

5 (19)

The functions hST
i are obtained from Eqns. (18) replacing r by s and viceversa.

In order to assure the convergence of the MITC8 formulation two issues have to be
analyzed: the stability and the consistency of the formulation [24].

Regarding stability we have shown that the MITC8 shell element formulation does not
contain spurious rigid body modes.

However, regarding the consistency of the formulation, we can only assess that when
using elements with straight sides and evenly spaced nodes the Patch Tests are all exactly
satisfied. Relatively small errors arise in the Patch Test results obtained using elements
with curved sides or with mid-side nodes not placed at their mid-side physical location.

We have already published extensive numerical experimentation illustrating on the
MITC8 performance in linear analyses [12-13]. In Figures 12 to 16 we reproduce the results
corresponding to a few selected linear benchmark cases.

4. GEOMETRIC AND MATERIAL NONLINEAR FORMULATIONS
(SMALL STRAINS)

We formulate an incremental analysis: being known the configuration at time (load level)
t we search for the configuration at time (load level) t + Δt [6]. For this purpose we make
use of the Total Lagrangian Formulation [6].

For the equilibrium configuration at time t + Δt the Principle of Virtual Work [6],
states ∫

◦V

t+Δt
◦ S : δ

(
t+Δt
◦ εεεεεεεεεεεεεε

) ◦dV = t+Δt� (20)
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Figure 12. Analysis of a plane stress perforated plate (MITC8)

In the above we have used Bathe’s notation and:

• t
◦S : 2nd. Piola-Kirchhoff stress tensor, corresponding to the t-configuration and referred
to the configuration at time t = 0 (undeformed) [25-28].
It should be remembered that t

◦S is the pull-back of the Kirchhoff stress tensor (tτ)
from the t-configuration to the configuration at t = 0 [25,26].

Defining a coordinate system in the t-configuration (spatial configuration), with coordi-
nates {txi ; i = 1, 2, 3} and covariant base vectors tg

i
, we can write

tτ = tτ ij tg
i

tg
j

(21.a)

where
tτ ij =

◦ρ
tρ

tσij (21.b)

◦ρ , tρ : densities in the t = 0 and t-configurations respectively.
tσij : contravariant components of the Cauchy stress tensor in the spatial configuration.
Defining a coordinate system in the configuration corresponding to t = 0 (reference
configuration), with coordinates {XI ; I = 1, 2, 3} and covariant base vectors GI , we
can write

t
◦S = t

◦S
IJ GI GJ (22.a)
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Figure 13. The MITC8 shell element does not lock
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Figure 14. Analysis of plates (MITC8)
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Figure 15. Pinched cylinder (MITC8)
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Figure 16. Scordelis–lo shell (MITC8)

where using the standard notation of manifold analysis [25,26]

t
◦S

IJ =
[
tφ∗(tτ ij)

]IJ
(22.b)

t
◦S

IJ =
(

t
◦F

−1
)I

i

tτ ij
(

t
◦F

−1
)J

j
(22.c)

In the above
t
◦F

i
I =

∂txi

∂XI
(23)

are the mixed components of the deformation gradient tensor [27,28] (two point tensor
[25]).

• t
◦ε : Green-Lagrange strain tensor, corresponding to the t-configuration and referred to
the configuration at time t = 0 [25-28].
Defining in the spatial configuration the Almansi strain tensor te [25-28] we can write
[25-26]

t
◦εIJ =

[
tφ∗(teij)

]
IJ

(24.a)

t
◦εIJ = (t

◦F )i
I

teij (t
◦F )j

J (24.b)

• t� : virtual work of the external loads acting in the t-configuration.

We will now develop the incremental equations working in the element natural coordinate
system (a convective system):

{ri ; i = 1, 2, 3}: coordinates of the natural system
tg̃

i
: covariant base vectors in the spatial configuration (natural system)

G̃i: covariant base vectors in the reference configuration (natural system).



Nonlinear Analysis of Shells Using the MITC Formulation 23

In the spatial configuration

tσ = tσ̃ij tg̃
i

tg̃
j

(25.a)

tτ = tτ̃ ij tg̃
i

tg̃
j

(25.b)

te = tẽij
tg̃i tg̃j (25.c)

and in the reference configuration

t
◦S = t

◦S̃
IJ tG̃I

tG̃J (26.a)

t
◦ε = t

◦ε̃IJ
tG̃

I tG̃
J

(26.b)

It is worth pointing out that [26]

t
◦S̃

IJ = t
◦τ̃

ij (27.a)

t
◦ε̃IJ = t

◦ẽij (27.b)

for I = i and J = j .
For the incremental step from the t-configuration to the (t + Δt)-configuration [6]

t+Δt
◦ S̃IJ = t

◦S̃
IJ + ◦S̃IJ︸︷︷︸

increment

(28.a)

t+Δt
◦ ε̃IJ = t

◦ε̃IJ + ◦ε̃IJ︸︷︷︸
increment

(28.b)

◦ε̃IJ = ◦ẽIJ︸︷︷︸
linear terms

+ ◦η̃IJ︸︷︷︸
nonlinear terms

(28.c)

For linearizing the step we use [6]

◦S̃
IJ = ◦C̃

IJKL
◦ẽKL (29.a)

δ◦ε̃IJ = δ◦ẽIJ (29.b)

In Eqn. (29.a) ◦C is the tangent constitutive tensor [29-31] in the reference configuration

[25-26].
Hence, the linearized incremental equations are [6]

∫
◦V

◦C̃IJKL ◦ẽKL
δ (◦ẽIJ

) ◦dV +
∫

◦V

t
◦S̃

IJ δ (◦η̃IJ
) ◦dV = t+Δt� −

∫
◦V

t
◦S̃

IJ δ (◦ẽIJ
) ◦dV

(30)

As it is well known, the (t + Δt)-configuration is determined using the above equation
in an iterative scheme [6,32,33].

As this point it is important to recognize that in a geometrically nonlinear analysis we
are dealing with finite rotations that cannot be considered vectors anymore [34].
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4.1 Finite rotations formulation

In this Section we will revise the A-I-Z shell element formulation for the case of finite
rotations, following our previous work in Ref. [34].

In the step from t to t + Δt, at any node “k”

t+ΔtV k
n = t+Δt

t Rk · tV k
n (31)

where t+Δt
t Rk is a rotation tensor and

∣∣tV k
n

∣∣ =
∣∣t+ΔtV k

n

∣∣ = 1.
It is obvious that the rotation defined in Eqn. (31) is a rotation around an axis normal

to the plane
(

tV k
n , t+ΔtV k

n

)
. Therefore the rotation axis is contained in the plane(

tV k
1 , tV k

2

)
.

Following Argyris [35] we can write the rotation tensor t+Δt
t Rk in a Cartesian system

with orthonormal base vectors
(

tV k
1 , tV k

2 , tV k
n

)
; in this system, the matrix formed

with the rotation tensor components is

[
t+Δt
t Rk

]
= [I3] +

sin (θk)
θk

[
Θk

]
+

1
2

[
sin (θk\2)

(θk\2)

]2 [
Θk

]2
(32.a)

In the above

θk =
[
(θ k

1 )2 + (θ k
2 )2

] 1
2 (32.b)

[
Θk

]
=

[ 0 0 θ k
2

0 0 −θ k
1−θ k

2 θ k
1 0

]
(32.c)

[I3] is a unit (3x3) matrix.
It is important to note that

• For infinitesimal incremental rotations θ k
1 and θ k

2 are independent infinitesimal
rotations around tV k

1 and tV k
2 respectively.

• For finite incremental rotations θ k
1 and θ k

2 are not independent rotations, they are
the two variables that define the rotation tensor.

• As in the infinitesimal rotations case we only have 5 d.o.f. / node.

4.1.1 Linearization of the equilibrium equations

In Ref. [35] Argyris developed a series expansion for Eqn. (32.a)[
t+Δt
t Rk

]
= [I3] +

[
Θk

]
+

1
2!

[
Θk

]2
+ · · · (33)

Using the above in Eqn. (31) we get

t+ΔtV k
n − tV k

n = θk × tV k
n +

1
2

θk × (
θk × tV k

n

)
+ h.o.t. (34.a)

where we defined

θk = θ k
1

tV k
1 + θ k

2
tV k

2 (34.b)
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From Eqns. (34.a) and (34.b) we get

t+ΔtV k
n − tV k

n =
(
θ k
2

tV k
1 − θ k

1
tV k

2

) − 1
2
[
(θ k

1 )2 + (θ k
2 )2

]
tV k

n + h.o.t. (34.c)

Hence, for the incremental displacement at a point inside the shell element, in the case
of finite rotations instead of Eqn. (2) we get

u = hk uk +
r3

2
hk

tak

(−θ k
1

tV k
2 + θ k

2
tV k

1

)− r3

4
hk

tak

[
(θ k

1 )2 + (θ k
2 )2

]
tV k

n + h.o.t.

(35)

In the above equation we use the hypothesis that the thickness remains constant during
the deformation process (t+Δtak = tak = · · · = ◦ak) . Hence the formulation that we
derive in this Section can only be used for the analysis of cases where the strain components
are infinitesimal.

We can also write Eqn. (35) as

u = uI + uII + h.o.t. (36.a)

where

uI = hk uk +
r3

2
hk

tak

(−θ k
1

tV k
2 + θ k

2
tV k

1

)
(36.b)

uII = − r3

4
hk

tak

[
(θ k

1 )2 + (θ k
2 )2

]
tV k

n (36.c)

We include in uI the terms obtained when considering only infinitesimal rotations and
we include in uII the terms containing (θ k

i )2.
In the spatial configuration at time (t + Δt) the covariant base vectors of the element

natural coordinate system are

t+Δtg̃
i

= tg̃
i

+
∂u
∂ri

(i = 1, 2, 3) (37)

Since

t+Δt
◦ ε̃ij =

1
2

[
t+Δtg̃

i
· t+Δtg̃

j
− ◦g̃

i
· ◦g̃

j

]
(38.a)

using Eqn. (37) we get

t+Δt
◦ ε̃ij = t

◦ε̃ij +
1
2

[
tg̃

i
· ∂u

∂rj

+ tg̃
j
· ∂u

∂ri

+
∂u
∂ri

· ∂u
∂rj

]
︸ ︷︷ ︸

◦ε̃ij = ◦ ẽij + ◦η̃ij

(38.b)

Using Eqns. (36) and keeping only up to the quadratic terms in generalized incremental
displacements, we get

◦ẽij =
1
2

[
tg̃

i
· ∂uI

∂rj

+ tg̃
j
· ∂uI

∂ri

]
(39.a)

◦η̃ij =
1
2

[
tg̃

i
· ∂uII

∂rj

+ tg̃
j
· ∂uII

∂ri

+
∂uI

∂ri

· ∂uI

∂rj

]
(39.b)
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Note that,

• In elements with no rotational d.o.f. (e.g. 2D and 3D continuum elements) Eqn. (28.c)
represents exactly the total strain increments. In our case Eqn. (28.c) represents only
an approximation to the strain increments, because in the derivation of Eqn. (39.b) we
neglect the terms of order higher than two in generalized displacement increments.

• Equations (39) contain all the terms up to the second order in generalized displacement
increments. This guarantees a complete quadratic form of the incremental energy, leading
therefore to a consistent tangent stiffness matrix.

4.2 Nonlinear formulation for the MITC shell elements

For the standard A-I-Z shell element, the incremental displacements are calculated using
Eqn. (35) and the incremental strains are directly calculated using Eqns. (39).

For the MITC elements the incremental displacements are calculated in the same way, but
the incremental strains are interpolated using the interpolation formulae that we presented
in Section 3.

4.2.1 MITC4 shell element

• The “in-layer” strain incremental components (◦ẽ11 , ◦ẽ22 , ◦ẽ12) and (◦η̃11 , ◦η̃22 , ◦η̃12)
are directly calculated from the incremental displacements interpolation.

• The transverse shear strain incremental components (◦ẽ13 , ◦ẽ23) and (◦η̃13 , ◦η̃23) are
interpolated using Eqns. (11).

In order to illustrate on the behavior of the MITC4 shell element in nonlinear analyses
we present in Figures 17 to 19 some selected examples.

4.2.2 MITC8 shell element

• The “in-layer” incremental strain components (◦ẽ11 , ◦ẽ22 , ◦ẽ12) and (◦η̃11 , ◦η̃22 , ◦η̃12)
are interpolated using Eqns. (16).

• The incremental transverse shear strain components (◦ẽ13 , ◦ẽ23) and (◦η̃13 , ◦η̃23) are
interpolated using Eqns. (17) to (19).

In order to illustrate on the behavior of the MITC8 shell element in nonlinear analyses
we present in Figures 20 and 21 some selected examples.

5. FINITE STRAIN ELASTO-PLASTIC FORMULATION

The modelling of some industrial processes like sheet metal forming and the simulation of
impact problems in metallic shell structures require the use of a finite strain elasto-plastic
shell analysis capability.

In our Ref. [23] we developed a new formulation for the MITC4 shell element for finite
strain elasto-plastic analysis.

The new MITC4 formulation is based on:

• The interpolations presented in Section 3 for the MITC4 shell element.
• Lee’s multiplicative decomposition of the deformation gradient [36,37].
• The hyperelastic expression of the Von Mises flow theory developed using the principle

of maximum plastic dissipation [38-42] (associated flow rule [43]).

Following our previous developments for 2D analysis [44] in Ref. [23] we presented a
Total Lagrangian-Hencky formulation for the MITC4 shell element (MITC4-TLH) using a
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Figure 17. Large deflection analysis of a cantilever using MITC4 elements. (The lines
indicate the analytical results and the symbols �, � and • the numerical results)

hyperelastic constitutive equation in terms of Hencky’s logarithmic strain tensor and its
work conjugate stress tensor [45,46].

The kinematic description of the MITC4-TLH shell element incorporates 5 d.o.f. per node
(see Section 3) and also a thickness stretching interpolation with one thickness stretching
d.o.f. per Gauss point.

We use a general 3D constitutive relation and condense the thickness stretching d.o.f. at
the elements level by imposing at each Gauss point Love’s fourth postulate [47]: tσnn = 0;
where tσnn is the Cauchy stress component in the shell normal direction tn in the spatial
configuration.

It is important to mention that other Authors have previously developed finite strain
shell elements. Among them we can reference:

• Rodal and Witmer [48] in 1979 developed a shell element for elasto-plastic analysis that
a posteriori of the displacement calculations updates the shell thickness. The thickness
update is performed for materials following a Von Mises associated plasticity flow rule
neglecting the elastic volumetric strain.

• Hughes and Carnoy [49] in 1983 developed a finite strain shell element for the Mooney-
Rivlin material. Their element uses plane stress constitutive relations for the laminae
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Figure 18. Nonlinear spherical shell (MITC4)

and also updates the shell thickness a posteriori of the displacements calculation in a
staggered iterative calculation.

• Simo and co-workers [50-54] in the period 1988-1992 developed a shell element formula-
tion that includes the possibility of finite elasto-plastic shell analysis using a fully consis-
tent extensible thickness approach. Since this shell element works with stress resultants
an IIIIIIIIIIIIII lyushin type plasticity model is used.

Comparing the MITC4-TLH formulation with the above ones we can mention that as
compared with the two first ones the MITC4-TLH formulation introduces the “in-layer”
plane stresss condition consistently, and as compared with Simo’s et al. formulation we do
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Figure 19. Large displacements/rotations elasto–plastic analysis of a cylindrical shell
(MITC4)

not have to use an Ilyushin type plasticity model, instead in the MITC4-TLH formulation
we use a more general σ − ε type of plasticity model. However, Simo’s shell element is able
to incorporate 3D effects because the hyphotesis tσnn = 0 is not enforced while in the
MITC4-TLH we restrict ourselves to the situations in which the stress through the thickness
can be neglected.

5.1 Kinematic description of the MITC4-TLH shell element

The difference between the kinematic description of the MITC4-TLH element and the
kinematic description developed in Eqn. (35) under the assumption of infinitesimal strains is
that in the present case the only kinematic assumption that we introduce is that the director
vectors remain straight during deformation, but we do not include the constant thickness
assumption (tak = ◦ak). In the present formulation we use, in a global Cartesian frame

tu(r1, r2, r3) = tx(r1, r2, r3) − ◦x(r1, r2, r3)
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Figure 20. Large deflection analysis of cantilever using MITC8 elements

= hk(r1, r2) tuk +
1
2

hk(r1, r2)
[∫ r3

0

tλ(r1, r2, s) ds

]
◦ak

tV k
n

− r3

2
hk(r1, r2) ◦ak

◦V k
n (40)

where tλ(ri) is the thickness stretching at the point with natural (convected) coordinates
(ri).

During the iterative solving processes it is important to avoid negative numerical values
of tλ (non-physical values), therefore we use the variable [54]

tξ(ri) = ln tλ(ri) (41.a)
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Figure 21. Nonlinear analysis of a linear elastic plate under uniform pressure using the
MITC8 element. (Four elements were used to model one quarter of the plate)

In the finite element discretization, we use the following interpolation

tξ(ri) = h G
j (ri) tξj (41.b)

where h G
j is a Lagrangian polynomial that takes a unit value at the j-th Gauss point and

a zero value at all the other integration points. Also tξj is the value of tξ(ri) at the j-th
Gauss point.

Using Eqns. (41) in Eqn. (40) we get

tu = hk
tuk +

1
2

hk

[ ∫ r3

0

exp (h G
j

tξj)ds

]
◦ak

tV k
n − r3

2
hk

◦ak
◦V k

n (42)

Since we eliminate the tξj d.o.f. at the element level, the MITC4-TLH shell element
like all the shell elements of the A-I-Z family, presents 5 d.o.f. / node.
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5.2 Strain interpolations

From Eqn. (40) we can calculate the deformation gradient tensor [27-28] derived from the
displacement interpolation: t

◦F
DI , at any point inside the element.

Using a right polar decomposition [27,28]

t
◦F

DI = t
◦R

DI · t
◦U

DI (43.a)

The Hencky strain tensor derived from the displacement interpolation is

t
◦H

DI = t
◦H̃

DI
ij

◦gi ◦gj = ln t
◦U

DI (43.b)

To avoid shear locking we interpolate the covariant strain components of the Hencky
strain tensor using the same interpolations that we used in Section 3:

- The “in-layer” strain components are directly

t
◦H̃ij = t

◦H̃
DI

ij ; i, j = 1, 2 (44)

- The transverse shear strains are interpolated with the formulae schematized previously
in Figure 5

t
◦H̃13 =

1
2

(1 + r2) t
◦H̃13|DI

A +
1
2

(1− r2) t
◦H̃13|DI

C (45.a)

t
◦H̃23 =

1
2

(1 + r1) t
◦H̃23|DI

D +
1
2

(1− r1) t
◦H̃23|DI

B (45.b)

Where the t
◦H̃ij |DI

P are the covariant strain components of the Hencky strain tensor,
calculated at the sampling point P , from the displacement interpolation.

Using Eqns. (44) and (45) we can write

t
◦H = t

◦H̃ij
◦gi ◦gj (46)

The rotation, right stretch and deformation gradient tensors consistent with the above
interpolations are

t
◦R = t

◦R
DI (47.a)

t
◦U = exp (t

◦H) (47.b)
t
◦F = t

◦R · t
◦U = t

◦R
DI · exp(t

◦H) (47.c)

5.3 The total Lagrangian-Hencky formulation

We can define the pull-back of the Kirchhoff stress tensor under the rotation t
◦R [55,26]

tΓIJ =
[

t
◦R

∗(tτ ij)
]IJ

(48.a)

tΓIJ = (t
◦R

T )I
i

tτ ij (t
◦R

T )J
j (48.b)

It is important to realize that tΓ is a tensor obtained vias a rotation of tτ .
It has been shown by Atluri [46] that for isotropic materials the stress work rate per unit

volume of the reference configuration is

tẆ◦ = tΓ :
d
dt

(t
◦H) (49)
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In an isotropic material tσ and t
◦V (left stretch tensor) are coaxial, and since [26]

t
◦HIJ = ln

[
t
◦R

∗(t
◦Vij)

]
IJ

(50)

it is obvious that in an isotropic material tΓ and t
◦H are also coaxial.

5.3.1 Kinematics of finite elasto-plastic deformations

For a solid continuum body B undergoing an elasto-plastic deformation process, we present in
Figure 22 a scheme of Lee’s multiplicative decomposition of the deformation gradient [36,37].
The intermediate (unstressed) configuration does not need to be an actual configuration of
the body B because it does not need to be a smooth homeomorphism of B onto a 3D-
Euclidean space [27] and in general it will not be an actual configuration [36,37].

For the multiplicative decomposition

t
◦F = t

◦Fe
· t
◦Fp

(51)

It is inmediate to show that in the spatial configuration the velocity gradient is given by
[23]

tl = t
◦Ḟe

· t
◦F

−1

e
+ t

◦Fe∗(tl
p
) (52.a)

In the above we used
tl

p
= t

◦Ḟp
· t
◦F
−1

p
(52.b)

and also, by similarity with Eqns. (48)

t
◦Fe∗

(
tl

p

)
= t

◦Fe
· tl

p
· t
◦F
−1

e
(52.c)

We can make an additive decomposition of tl
p

into a symmetric tensor (td
p
) and a

skew-symmetric one (tω
p
) [36,37].

For a material with isotropic elastic properties we can impose tω
p

= 0 .

5.3.2 Stresses in finite strain elasto-plastic problems

By doing the polar decomposition of t
◦Fe

and t
◦Fp

we get

t
◦Fe

= t
◦Re

· t
◦Ue

= t
◦Ve

· t
◦Re

(53.a)

t
◦Fp

= t
◦Rp

· t
◦Up

= t
◦Vp

· t
◦Rp

(53.b)

and we can define the elastic Hencky strain tensor

t
◦He

= ln
(

t
◦Ue

)
(54)

Considering that stresses are developed when the intermediate configuration evolves into
the spatial configuration, following Eqns. (48) and by means of the notation abuse used in
Eqn. (52.c) we define

tΓ = t
◦R

∗
e(

tτ) (55)
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Figure 22. Finite strain elasto–plastic analysis
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5.3.3 The yield criterion

Following the work by Lee [36,37] we formulate the yield criterion in the spatial configuration
in terms of Kirchhoff stresses.

Since we are interested in the behaviour of metallic shells we use the Von Mises (J2) yield
criterion. Considering the case of isotropic hardening we get, for the yield criterion

tφ =
[

3
2

tτ
D

: tτ
D

] 1
2

− tσy = 0 (56)

In the above, tτ
D

is the deviatoric Kirchhoff stress tensor.
It is important to notice that the tensor defined by

tΓ
D

= t
◦R

∗
e(

tτ
D
) (57)

is also deviatoric (traceless). By doing an t
◦Re-pull-back an Eqn. (56) we get for the yield

criterion

tφ =
[

3
2

tΓ
D

: tΓ
D

] 1
2

− tσy = 0 (58)

For the yield stress, tσy , we define the following evolution equation (hardening)

tσ̇y = h tėp (59)

where h = h(tep) is the hardening modulus and tep is the equivalent plastic strain, to
be defined in what follows.

5.3.4 Energy dissipation

We now introduce the free energy function defined in the spatial configuration, per unit
volume of the reference configuration: tΨ.

For a pure mechanical problem, the Clausius-Duhem inequality (principle of dissipation)
[27] takes the form

tτ : td − tΨ̇ ≥ 0 (60.a)

td = sym(tl) (60.b)

In the above

tΨ = tΨ(t
◦He

, tep) (60.c)

After Simo [41] we use the following uncoupled expression for the free energy

tΨ = tΨe(t
◦He

) + tΨp(tep) (60.d)

Using the notation

tl
e

= t
◦Ḟe

· t
◦Fe

−1 = td
e

+ tω
e

(61.a)

tl
p

= t
◦Fe∗(tl

p
) = td

p
+ tω

p
(61.b)
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we can write

tτ : td = tτ :
(

td
e

+ td
p

)
(62.a)

For an ellastically isotropic material

tτ : td
e

= tΓ :
d
dt

(
t
◦He

)
(62.b)

and we can show, after some algebra, that

tτ : td
p

=
[

t
◦F

T

e
· tτ · t

◦F
−T

e

]
: tl

p
(62.c)

Using the above results we can write the Clausius-Duhem inequality as

[
tΓ − ∂tΨe

∂t◦He

]
:

d
dt

(
t
◦He

)
+

[
t
◦F

T

e
· tτ · t

◦F
−T

e

]
: tl

p
− tΨ̇p ≥ 0 (63)

In the case of a pure elastic deformation the above equation leads to

tΓ =
∂tΨe

∂t◦He

(64)

Hence

tD =
[

t
◦F

T

e
· tτ · t

◦F
−T

e

]
: tl

p
− tΨ̇p ≥ 0 (65.a)

where tD is called dissipation [41].
For elastically isotropic materials we can re-write Eqn. (65.a) as

tD = tΓ : td
p
− tΨ̇p ≥ 0 (65.b)

Using the Principle of Maximum Plastic Dissipation (associated flow rule) [56] we have
to

- maximize tD
- under the constraint tφ ≤ 0.

The Khun-Tucker conditions [57] for the above constraint maximization problem lead to

td
p

= tλ
∂tφ

∂Γ
(66.a)

where tλ is a positive parameter. In addition to the above we get

tλ tφ = 0 (66.b)

From the above

tλ = 0 if tφ < 0 (66.c)

tλ > 0 if tφ = 0 (66.d)
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Please notice that Eqn. (66.a) is the well known normality-rule [43,56] of associated
plasticity.

We define the equivalent plastic strain rate as [43]

tėp =
[

2
3

td
p

: td
p

] 1
2

(67)

and from Eqn. (66.a)

tλ = tėp

⎡
⎣ 3

2
(

∂tφ
∂Γ

: ∂tφ
∂Γ

)
⎤
⎦

1
2

(68)

Using Eqn. (58) in the above ones we get

td
p

=
3
2

tėp

tΓ
D[

3
2

tΓ
D

: tΓ
D

] 1
2

(69)

5.4 Calculation of stresses, plastic variables and thickness stretchings

Concentrating on the case of an elastic behavior linear and isotropic we write

tΨe =
1
2

t
◦He

: C : t
◦He

(70)

where C is an isotropic and constant fourth order tensor (Hooke’s law).

The condition of zero stresses through the thickness (spatial configuration) leads to

tσnn = tτnn = [t◦Re(tτ)]NN = 0 (71)

where tn = t
◦Re

· N ·
In the space of the Re-pull-back we do not know a priori the N-direction for which

tΓNN = 0 . Hence we cannot include in C the “in-layer” plane stress hypothesis.

Therefore we use the standard 3D constitutive tensor, and the plane stress hypothesis is
enforced via the iterative algorithm that we present in the following Section.

5.4.1 Iterative algorithm for calculating thickness stretchings

The incremental step from the t-configuration to the (t + Δt)-configuration is solved with
an iterative scheme, and for each iteration

- Trial values are proposed, in some way, for the mid-surface nodes position (t+Δtxk) and
for the director vectors (t+ΔtV k

n ) .
- Stresses, plastic variables and thickness stretchings are determined for the trial (t + Δt)-

configuration.

For each element:

· we start from the data corresponding to the previous equilibrium configuration{
t
◦Fp

; tσy ; tξ
}

at each Gauss point.
· we calculate those quantities at the trial (t + Δt)-configuration.
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At every Gauss point in the (t + Δt)-configuration we need to satisfy the following
requeriments:

t+Δtτnn|k
(

t+Δtxq ; t+ΔtV q
n ; t+Δte q

p ; t+Δtξq

)
= 0

t+Δtφ|k
(

t+Δtxq ; t+ΔtV q
n ; t+Δte q

p ; t+Δtξq

)
= 0

k, q = 1, · · · ,NG (72)

Having NG Gauss points per element, Eqns. (72) represent a system of (2 ∗ NG)
nonlinear equations, with (t+Δte q

p and t+Δtξq ; q = 1, · · · ,NG) as unknowns.
It is important to notice that Eqns. (72) are not decoupled as in the case of the standard

radial return-algorithm.
To solve the nonlinear system given by Eqns. (72) we use, at the element level, the

iterative algorithm shown in Box I.

5.4.2 Radial return algorithm

We use general 3D radial return algorithm.
For each Gauss point the data is

- t+Δt
◦ F(t+Δtxk ; t+ΔtV k

n ; t+Δtξ)

- t+Δt
◦ H ; t+Δt

◦ U ; t+Δt
◦ C

- t
◦Fp

and tσy

and we search for: t+Δt
◦ F

p
; t+Δtσy and t+ΔtΓ.

Therefore, at each Gauss point we go through the calculation procedure shown in Box
II.

The equations used in the radial return algorithm were derived in our Refs. [23,44],
following the derivations in Ref. [58].

The reader should realize at this point that:

• The total strains are interpolated from the sampling points.
• The stresses and plastic variables are only calculated at the integration points, using the

presented radial return algorithm.

5.5 The incremental formulation

The equilibrium configuration at time (load level) t + Δt has to fulfil the Principle of Virtual
Work ∫

t+ΔtV

t+Δtσij δeij
tdv = t+Δt� (73.a)

where

t + ΔtV : volume of the spatial configuration at t + Δt.
t+Δtσij : contravariant components of the Cauchy stress tensor in the (t + Δt)-configura-

tion.
eij = 1

2
(ui|j + uj |i) where ui are incremental displacements measured from the

(t + Δt)-configuration.
t+Δt� : virtual work of the external loads acting on the (t + Δt)-configuration.
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• Iterative algorithm at the elements level

t+Δtep =
{

t+Δte q
p

}
; t+Δtξ =

{
t+Δtξq

}
1

i = 0
t+Δtξ(i) = tξ

2
. Calculate at each Gauss point t+Δt

◦ H(i) using Eqns. (43) to (46).
. Calculate at each Gauss point t+Δt

◦ U(i) using Eq. (47.b).

. Calculate at each Gauss point t+Δt
◦ C(i) =

(
t+Δt
◦ U(i)

)T

· t+Δt
◦ U(i).

3
Using the radial return algorithm (Section 5.4.2.) calculate at each Gauss
point,

t+ΔtΓ(i) and t+Δt
◦ R(i)

e

4
Calculate at each Gauss point (k),

t+Δtτ (i)
nn|k = t+ΔtV k

n ·
[

t+Δt
◦ R (i)

e∗ (t+ΔtΓ(i))
]
· t+ΔtV k

n

5
Determine: τ max

nn = max
(
abs

(
t+Δtτ (i)

nn|k
))

; k = 1, 2, · · ·NG

6
IF ( τmax ≤ E ∗ TolNN ) THEN

the inner loop has converged
ELSE

go to 7
E: Young’s modulus
TolNN = 1.E − 8 in our numerical implementation

7
i = i + 1
At each Gauss point (k):

t+Δtτ (i−1)
nn

∣∣∣
k

+
NG∑
q=1

{
∂τnn

∂ξq

∣∣∣∣(i−1)

k

+
[
∂τnn

∂ep

∂ep

∂ξq

](i−1)

k

}
[
t+Δtξ(i)

q − t+Δtξ(i−1)
q

]
k

= 0

The derivatives in the above equation are calculated in Appendix I.
The above NG linear equations provide t+Δtξ(i)

8
Improve the value of t+Δtξ(i) using a line search procedure along the direc-
tion:

t+Δtξ(i) − t+Δtξ(i−1)

9
GO TO step 2

Box I
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• Radial return algorithm at each Gauss point

Elastic predictor
F̂

p
= t

◦Fp
(trial value)

σ̂y = tσy (trial value)

Ĉ
e

=
(
F̂

p

)−T

· t+Δt
◦ C ·

(
F̂

p

)−1

Ĥ
e

= ln
[
(Ĉ

e
)−

1
2

]
Γ̂ = C : Ĥ

e

φ̂ =
[
3
2

Γ̂
D

: Γ̂
D

] 1
2

− σ̂y

IF ( φ̂ ≤ 0 ) THEN
t+Δt
◦ F

p
= F̂

p
t+ΔtΓ = Γ̂

ELSE
go to plastic corrector

Plastic corrector

Δep =
φ̂

(3 G + h)

G : shear modulus of the elastic law
h : hardening modulus

t+ΔtΓ
D

= Γ̂
D
− √

6 G Δep

Γ̂
D√

Γ̂
D

: Γ̂
D

The above equation clearly displays the radial return property of the plastic corrector
algorithm.

We obtain t+ΔtΓ remembering that in the case of associated Von Mises flow rule the
hydrostatic stress in only related to the elastic deformations.

Also,

t+Δt
◦ F

p
= exp

⎛
⎝√

3
2

Δep

Γ̂
D√

Γ̂
D

: Γ̂
D

⎞
⎠ · t

◦Fp

t+Δtσy = tσy + β h Δep

Box II
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Using the Kirchhoff stress tensor we can integrate on the reference volume (◦V ), hence∫
◦V

t+Δtτ ij δeij
◦dV = t+Δt� (73.b)

For an elastically isotropic material [46]

t+Δtτ ij δeij = t+ΔtΓIJ δ(He)IJ (74)

where t+ΔtΓIJ is defined by Eqn. (55).
Therefore we can rewrite Eqn. (73.b) as∫

◦V

t+ΔtΓIJ δ(He)IJ
◦dV = t+Δt� (75)

Since we are interpolating total Hencky strain components rather than elastic Hencky
strain components, we have to use in Eqn. (75)

δ(He)IJ =
∂(He)IJ

∂HKL

δHKL (76)

The fourth order tensor
(

∂(He)IJ

∂HKL

)
is calculated at every Gauss point (see Appendix I).

Note that it cannot be calculated at the sampling points because the tensor t+Δt
◦ F

p
is only

known at the Gauss points.
We can now rewrite Eqn. (75) as∫

◦V

t+ΔtΓIJ ∂(He)IJ

∂HKL

δHKL
◦dV = t+Δt� (77)

5.5.1 Linearization of the equilibrium equations

The nonlinear equilibrium equations (77) are solved using a Newton-Raphson iterative
scheme, with the possible addition of a line search algorithm [57].

For the (i + 1)− th iteration, the linearized equation is

∫
◦V

dΓIJ

(
∂(He)IJ

∂HKL

)(i)

δHKL
◦dV +

∫
◦V

[
t+ΔtΓ(i)

]IJ
d
[
∂(He)IJ

∂HKL

δHKL

]
◦dV =

t+Δt� −
∫

◦V

[
t+ΔtΓ(i)

]IJ
[
∂(He)IJ

∂HKL

](i)

δHKL
◦dV (78)

When linearizing we use the following relations

t+ΔtΓ = t+ΔtΓ
[
t+Δtu ; t+Δtξ ; t+Δtep

]
(79.a)

t+Δt
◦ H

e
= t+Δt

◦ H
e

[
t+Δtu ; t+Δtξ ; t+Δtep

]
(79.b)

The derivatives in Eqn. (78) are developed in Appendix I.
Also we use

δHKL = 2
∂HKL

∂CPQ

∣∣∣∣(i) δεPQ (80)
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where δεPQ is the variation of the Green-Lagrange strain tensor covariant components.
The expression for this variation in terms of the displacements variation is given in Ref. [6].

For the derivation of the fourth order tensor
(

∂HKL

∂CP Q

)(i)

see Appendix I.
For calculating dΓ we use

• In the case of elastic loading / unloading

dΓ = C : dĤ
e

(81.a)

• In the case of plastic loading we have to determine a dΓ consistent with the radial
return algorithm.
From the equations developed for the plastic corrector phase we get,

t+ΔtΓ
D

= 2 G
[
Ĥ

eD
− t+Δtλ t+ΔtΓ

D

]
(81.b)

where t+Δtλ = 3
2

Δep
t+Δtσy

.
Differentiating Eqn. (81.b) we get

dΓ
D

= 2 G
[
dĤ

eD
− dλ tΓ

D
− tλ dΓ

D

]
(81.c)

Therefore

dΓ
D

=
2 G

1 + 2 G tλ

[
dĤ

eD
− dλ tΓ

D

]
(81.d)

From the consistency condition tφ̇ = 0 and using the evolution equation (59) together
with the above we get

dλ =
9 G

(
1 − 2

3
h tλ

)
2 tσ 2

y (3 G + h)
tΓ

D
: dĤ

eD
(81.e)

Hence, replacing in Eqn. (81.d)

dΓ
D

=
2 G

1 + 2 G tλ

[
I − tχ3

tΓ
D

tΓ
D

]
: dĤ

eD
(81.f)

in the above I is the fourth order unit tensor and

tχ3 =
9 G

(
1 − 2

3
h tλ

)
2 tσ 2

y (3 G + h)
(81.g)

We can rewrite Eqn. (81.f) as

dΓ
D

=
2 G

1 + 2 G tλ

[
I
DEV

− tχ3
tΓ

D

tΓ
D

]
: dĤ

e
(81.h)

In the above [25]

I
DEV

= I − 1
3

g g (81.i)

where g = t
◦R

∗
e

(
tg
)

and tg is the metric tensor of the spatial configuration.
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For a material behavior described by the associated von Mises flow rule and a linear
isotropic elastic relation

dΓ =
{

2 G

1 + 2 G tλ

[
I

DEV

− tχ3
tΓ

D

tΓ
D

]
+

E

3 (1 − 2 ν)
g g

}
: dĤ

e
(81.j)

The fourth order tensor between brackets on the r.h.s. of the above equation is the
algorithmic consistent tangent constitutive tensor [59-61] (tC

EP

).

It is important to realize that

(tCEP )IJKL = (tCEP )JIKL = (tCEP )IJLK = (tCEP )KLIJ (82)

In order to illustrate on the behavior of the MITC4-TLH shell element in finite strain
elasto-plastic analysis we present two examples in Figures 23 and 24.

CONCLUSIONS

The formulation of general shell elements using the method of mixed interpolation of tenso-
rial components was reviewed.

For problems in which the hypothesis of small strain deformations is valid, the formula-
tion and performance of the MITC4 and MITC8 shell elements was analyzed in detail.

The formulation of the MITC4-TLH shell element for finite strain elasto-plastic problems
was also analyzed.

a = 784.90
R1 = R2 = 2540
h = 99.45
E = 68.95
ν = 0.3

σY = 0.9
ET = 6.0

a) 3 × 3 mesh

Figure 23. Finite strain elasto–plastic analysis of a spherical shell (MITC4–TLH)
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Figure 23. (Continued)



Nonlinear Analysis of Shells Using the MITC Formulation 45

Figure 24. Inflation of an elasto–plastic cylinder
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APPENDIX I

I.1 Derivates of tτnn

We can write
tτnn = tVn · [ t

◦Re
· tΓ · t

◦R
T

e
] · tVn (I.1)

then

∂ tτnn

∂ tξq

= tVn ·
[

2 sym

(
∂ t
◦Re

∂ tξq

· tΓ · t
◦R

T

e

)
+ t

◦Re
· ∂ tΓ

∂ tξq

· t
◦R

T

e

]
· tVn (I.2)

Since t
◦F

DI = t
◦F

DI (tu , tξ), it is immediate to calculate the derivatives of
t
◦F

DI , t
◦U

DI , t
◦R

DI and t
◦H

DI with respect to tξq, and therefore of the interpolated
values t

◦H. Using Eqns. (47) we can calculate the derivatives of t
◦F , t

◦U and t
◦R.

We can write
t
◦Re

= t
◦F

DI · (t
◦U

DI)−1 · t
◦U · t

◦F
−1

p
· t
◦U

−1

e
(I.3)

and considering that

∂ t
◦Fp

∂ tξq

∣∣∣∣
ep

= 0 (I.4.a)

∂ t
◦Ue

∂ tξq

=
∂ t
◦Ue

∂ t◦Ce

:
∂ t
◦Ce

∂ t◦C
:

∂ t
◦C

∂ t◦H
:

∂ t
◦H

∂ tξq

(I.4.b)

we can calculate
∂ t

◦Re

(∂ tξq)
using the fourth order tensor we will develop in Section I.3 and

replace in Eqn. (I.2).
Also in Eqn. (I.2) we use

∂ t
◦Γ

∂ tξq

=
∂ t
◦Γ

∂ t◦He

:
∂ t
◦He

∂ t◦Ce

:
∂ t
◦Ce

∂ C
:

∂ t
◦C

∂ t◦H
:

∂ t
◦H

∂ tξq

(I.5)

again, to calculate the above expression we have to resort to the fourth order tensor we will
develop in Section I.3.



50 Eduardo N. Dvorkin

I.2 Derivatives used in the linearization of the equilibrium equations

• At each sampling point we have t
◦H

DI, dHDI and d(δHDI) that can be interpolated to
obtain t

◦H, dH and d(δH) at the Gauss points. When calculating the derivatives it is
important to take into account that [34]

d Vn = dθ2
tV1 − dθ1

tV2 (I.6.a)

d(δVn) = −(δθ1 dθ1 + δθ2 dθ2) tVn (I.6.b)

• To calculate t
◦He

, d t
◦He

and d(δ t
◦He

) at the Gauss points we use the accumulated value
of t
◦Fp

at those points ante the fourth order tensor we will develop in I.3 also calculated
at the Gauss points.

• Starting from the condition tτnn = 0 we can calculate

∂ tξq

∂ tuA

= −
[
∂ tτnn

∂ tξq

]−1
∂ tτnn

∂ tuA

(I.7)

• In our Ref. [44] we defined for 2D problems the fourth order tensor.

I.3 ∂ tH
e

/ ∂ tH

In our Ref. [44] we defined for 2D problems the fourth order tensor

tD =
∂ t
◦He

∂ t◦H
(I.8)

We calculate

tD =
∂ t
◦He

∂ t◦Ce

:
∂ t
◦Ce

∂ t◦C
:

∂ t
◦C

∂ t◦H
(I.9)

To calculate the first term on the r.h.s. of Eqn.(I.9) we construct t
◦He

using the eigen-
vectors and eigenvalues of t

◦Ce
.

To calculate the second term on the r.h.s. of Eqn.(I.9) we use

t
◦Ce

= t
◦F

−T

p
· t
◦C · t

◦F
−1

p
(I.10)

To calculate the third term on the r.h.s. of Eqn. (I.9) we construct t
◦C using the

eigenvalues and eigenvectors of t
◦H.

For the cases where we arrive to multiple eigenvalues we introduce small perturbations
[44].

Please address your comments or questions on this paper to:

International Center for Numerical Methods in Engineering
Edificio C-1, Campus Norte UPC
Gran Capitán s/n
08034 Barcelona, Spain
Phone: 34-93-4016035; Fax: 34-93-4016517
E-mail: onate@cimne.upc.es
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