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Inverse geometry heat transfer problem based on a radial basis
functions geometry representation
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SUMMARY

We present a methodology for solving a nonlinear inverse geometry heat transfer problem where
the observations are temperature measurements at points inside the object and the unknown is the
geometry of the volume where the problem is deÞned. The representation of the geometry is based
on radial basis functions (RBFs) and the nonlinear inverse problem is solved using the iteratively
regularized Gauss-Newton method. In our work, we consider not only the problem with no geometry
restrictions but also the bound-constrained problem.
The methodology is used for the industrial application of estimating the location of the 1150◦C

isotherm in a blast furnace hearth, based on measurements of the thermocouples located inside it. We
validate the solution of the algorithm against simulated measurements with different levels of noise
and study its behavior on different regularization matrices. Finally, we study the error behavior of the
solution. Copyright c° 2004 John Wiley & Sons, Ltd.

key words: heat conduction; inverse geometry problem; radial basis functions; iteratively
regularized Gauss-Newton method; blast furnace hearth

1. INTRODUCTION

Inverse heat transfer problems are important for various industrial applications. The purpose
of inverse heat transfer problems is to recover causal characteristics from information about
the temperature Þeld. Causal characteristics of heat transfer are boundary conditions and their
parameters, initial conditions, thermophysical properties, volumetric heat sources as well as
geometric characteristics of the studied object.
In this paper, we present a methodology for solving a nonlinear inverse geometry heat transfer

problem where the observations are temperature measurements at points inside the object and
the unknown is the geometry of the volume where the problem is deÞned. In Section 2, we
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2 M.GONZALEZ AND M. B. GOLDSCHMIT

formally deÞne the general inverse heat transfer problem and describe the Þnite element model
developed to solve the direct heat transfer problem.
There are a number of publications dealing with industrial applications of inverse geometry

problems (IGPs). Wawrzynek et al.[1] have combined IGPs with infrared tomography in order
to study non-destructive evaluation of surface damages in concrete structural elements. Park
et al.[2] have developed a model to identify the boundary shape of a domain dominated by
natural convection, which can be potentially applied in the determination of a phase change
isotherm in the Bridgman crystal growth of semiconductor materials. Kwag et al.[3] have
estimated the phase front motion of ice by applying an IGP; this model was used by the
authors for controlling and monitoring a latent heat energy storage system. Huang et al.[4]
have proposed to use an IGP to estimate the shape of frost growth on an evaporating tube
by using temperature readings. Ganapathysubramanian et al.[5] have presented a framework
to evaluate the shape sensitivity of Þnite thermo-inelastic deformations and have applied the
method to the design of open- and closed-die forging processes.
It is well-known that inverse problems are typically ill-posed in the sense that small

observation perturbations can lead to big errors in the solution. Such problems do not fulÞll
Hadamard�s postulates of well-posedness [6, 7], where one of the following properties does not
hold: a solution exists for all admissible data, the solution is unique, the solution depends
continuously on the data. Therefore, regularization methods have to be applied in order to
guarantee a stable solution.
Several regularization methods have been used in the literature to handle nonlinear ill-posed

problems [6, 7] by replacing the original ill-posed problem with a well-posed approximated
problem. Iterative regularization appears to be one of the most efficient approaches for the
construction of stable algorithms for solving nonlinear inverse problems [7]. Among this class
of methods, we use the iteratively regularized Gauss Newton method [8, 9, 10, 11]. In Section
3, we formulate the inverse geometry problem considering the case of a linear combination of
several regularization matrices and a bound constrained problem with geometry restrictions.
The estimated geometry of the object is described by polyharmonic radial basis functions

(RBFs) from a set of interpolation points deÞned by a set of parameters which are actually the
inverse geometry problem unknowns. RBFs are used both because they impose few restrictions
on the geometry of the interpolation points which do not need to lie on a regular grid, and
because they provide a smooth interpolation [12, 13, 14, 15, 16, 17].
Radial basis functions are a recent tool for interpolating data and have been used in many

areas. Perrin et al. [14] and Carr et al. [13] have used RBFs in medical imaging; Turk et al.
[18] and Carr et al. [12] have modeled surfaces implicitly with RBFs in computer graphics;
Kansa [16, 17] has introduced the RBFs method for solving partial differential equations; and
Belytschko et al. [19] have developed a structured Þnite element method for solids which uses
RBFs to implicitly deÞne surfaces. Frankle [15] has found that the RBFs are the best 2D
scheme among 29 different methods for scattered data interpolation.
In Section 4, we present the parametrization of the geometry, an introduction to RBFs

interpolation and a description of a simple bidimensional remeshing algorithm developed by
us.
The industrial problem to be solved in this paper is the estimation of the blast furnace

hearth wear. One of the most critical parts of the blast furnace is its hearth, which cannot
be repaired or relined without interrupting its production for a long time. Therefore, the
blast furnace campaign is mainly limited by the hearth refractory wear which is produced
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INVERSE GEOMETRY HEAT TRANSFER PROBLEM 3

by thermo-chemical solution and thermo-mechanical damage [20]. Since direct measurements
of the remaining lining thickness are impossible to be obtained, we use information about
the thermal state of the blast furnace hearth to estimate the erosion proÞle. Moreover, the
location of the 1150◦C isotherm is particularly useful because it represents a potential limit on
the penetration of liquid iron into the hearth wall porosity (1150◦C is the eutectic temperature
of carbon saturated iron [20]).
In Section 5, we develop the industrial application of estimating the location of the 1150◦C

isotherm in a blast furnace hearth, based on measurements of thermocouples located inside
it [21, 22, 23, 24]. Further, we validate the solution of the algorithm against simulated
measurements with different levels of noise and study its behavior on different regularization
matrices. We analyze the problem with no geometry restrictions but also the bound-constrained
problem. Finally, we study the error behavior of the solution.
The last Section deals with the work conclusions.

2. DEFINITION OF THE GENERAL PROBLEM

Consider a general steady-state heat transfer problem deÞned on an arbitrary volume (Ω)
which has a Þxed boundary (∂Ωn) where natural boundary conditions are applied, and an
unknown boundary (∂ΩT ) where a known temperature is applied. The shape and number of
materials that the volume Ω contains will depend on the location of the boundary ∂ΩT . As
shown in Figures 1.a and 1.b, since the materials are on Þxed positions, different locations of
the boundary ∂ΩT cause different shapes of materials M3 and M4.
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M4
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!
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(a) (b)

Figure 1. Schematic of the general problem.

Our purpose is to determine the location of the boundary ∂ΩT , and so the geometry of
the volume Ω, matching a set of temperatures measured at certain points located inside the
volume. Therefore, our general problem is an inverse geometry heat transfer problem where
the observations are temperature measurements at points inside the volume and the unknown
is the geometry of the volume where the problem is deÞned.
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4 M.GONZALEZ AND M. B. GOLDSCHMIT

2.1. The direct heat transfer problem

The direct problem solution is a prerequisite for the solution of the inverse problem. Our direct
problem is a steady-state heat transfer problem governed by

∇ · (k∇T ) = 0 ∀x ∈ Ω, (1)

where k is the temperature-dependent thermal conductivity, Ω ⊂ Rndim is a bounded domain
with 1 ≤ ndim ≤ 3, and ∂Ω is the smooth boundary of Ω.
Equation (1) is subjected to the following boundary conditions on ∂ΩT , ∂Ωq and ∂Ωc,

complementary parts of ∂Ω ( ∂Ωn = ∂Ωq ∪ ∂Ωc, ∂Ωq ∩ ∂Ωc = ∅ and ∂Ω = ∂ΩT ∪ ∂Ωn,
∂ΩT ∩ ∂Ωn = ∅):

� Dirichlet boundary condition on ∂ΩT :
T = Tw ∀x ∈ ∂ΩT , (2)

where Tw is a given imposed temperature.
� Neumann boundary condition on ∂Ωq:

−k ∇T · n = qw ∀x ∈ ∂Ωq , (3)

where qw is a given normal heat ßux and n is the outward normal to the surface ∂Ω.
� Robin boundary condition on ∂Ωc:

−k ∇T · n = h (T − T∞) ∀x ∈ ∂Ωc , (4)

where h is the convective heat transfer coefficient and T∞ is the ambient temperature.

The Galerkin Þnite element method [25, 26] is used to solve the direct heat transfer problem.
Thus, we obtain the following system of equations¡

Kk +Kc
¢
TFEM − F = 0, (5)

where TFEM is the vector of nodal temperatures, Kk is the conductivity matrix, Kc is the
thermal convection matrix and F is the thermal load vector, given byeT = N TFEM , (6)

Kk =

Z
Ω

BT k B dV , (7)

Kc =

Z
∂Ωc

h NT N dS , (8)

F =

Z
∂Ωc

h NT T∞ dS −
Z
∂Ωq

NT qw dS , (9)

where eT is the approximated temperature Þeld, N is the Þnite element interpolation matrix,

and B is the temperature-gradient interpolation matrix whose components are Bij =
∂Nj
∂xi

.

The equations are nonlinear because the thermal conductivity is temperature-dependent;
therefore, it is necessary to solve them using an iterative technique.

Copyright c° 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1�22
Prepared using nmeauth.cls



INVERSE GEOMETRY HEAT TRANSFER PROBLEM 5

3. FORMULATION OF THE INVERSE GEOMETRY PROBLEM

We consider our problem in Þnite-dimensional subspaces because we aim at obtaining practical
applications. This means that not only the number of measurements is Þnite, but also the
location of the unknown boundary ∂ΩT is parametrized in order to obtain the approximate
solution numerically.
Therefore, we parametrize the location of the unknown boundary ∂ΩT by a set of np

parameters p = (p1, . . . , pnp), and we formulate the inverse problem as Þnding the geometry
parameters p∗ such that

p∗ = arg min
p∈Rnp

F(p) (10)

where F(p) is a function deÞned by the least-square error between the calculated and measured
temperatures. Thus, F(p) is given by

F(p) = 1

2

°° T(p) − TObs
°°2 = 1

2

nobsX
i=1

h eT(xObsi ,p) − TObsi

i2
, (11)

where TObsi is the temperature measured at point xObsi , eT(xObsi ,p) is the temperature calculated

by the Þnite element model using the geometry parameters p, and nobs is the number of
observations.
It is well-known that inverse problems are typically ill-posed in the sense that small

observation perturbations can lead to big errors in the solution [6, 7]. Therefore, it is necessary
to apply regularization methods in order to guarantee a stable solution. Several regularization
methods have been used in the literature, and iterative regularization appears to be one of the
most efficient approaches for the construction of stable algorithms for solving nonlinear inverse
problems [7]. Among this class of methods, we use the iteratively regularized Gauss Newton
method.

3.1. Iteratively regularized Gauss-Newton method

We use a discrete scheme of the interatively regularized Gauss-Newton method [8, 9, 10, 11],
whose iterative solution is deÞned by:

GNpIter+1 = pIter +
h
DTT(pIter) DT(pIter) + αIter L

T L
i−1

·
h
DTT(pIter) ∆T

Obs
(pIter) + αIter L

T L
¡
p4 − pIter¢i (12)

where Iter denotes the iteration number; DT(p) is the sensitivity matrix; L is some

regularization matrix; ∆TObs(p) is a vector whose components are
h
TObsi − eT(xObsi , p)

i
with

i = 1, nobs; p4 is an a priori suitable approximation of the unknown set of parameters; and
αIter > 0 is the regularization parameter.
Further, the solution calculated with the iteratively regularized Gauss-Newton method,

GNpIter+1, is used to update pIter as follows

pIter+1 = pIter + βIter
¡
GNpIter+1 − pIter¢ (13)
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6 M.GONZALEZ AND M. B. GOLDSCHMIT

where βIter > 0 is a step length such that

F∗(pIter+1) < F∗(pIter) , (14)

with

F∗(p) =
1

2

°° T(p) − TObs
°°2 + 1

2
α
°° L ¡

p− p4¢°°2 . (15)

The selection of a step length makes sense due to the highly non-linear nature of the function
F∗(p), in which case βIter is typically less than 1.00.

3.1.1. Evaluation of the sensitivity matrix. The sensitivity matrix components are the partial
derivatives of the temperature with respect to the set of geometry parameters. We evaluate
them using a �discretize-then-differenciate� approach [27], which means that we Þrst discretize
the temperature Þeld and then we differentiate it by a Þnite difference approximation

∂T

∂pj

¯̄̄̄
(x,p)

≈
eT(x,{p1,...,pj+∆pj ,...,pnp}) − eT(x,{p1,...,pj ,...,pnp})

∆pj
. (16)

Therefore, the sensitivity matrix can be written as

DT(p)=


N(xObs1 )

∂T

∂p1

¯̄̄̄FEM
(p)

· · · N(xObs1 )

∂T

∂pnp

¯̄̄̄FEM
(p)

...
. . .

...

N(xObsnobs
)
∂T

∂p1

¯̄̄̄FEM
(p)

· · · N(xObsnobs
)
∂T

∂pnp

¯̄̄̄FEM
(p)


∈ Rnobs×np , (17)

where
∂T

∂pj

¯̄̄̄FEM
(p)

are vectors of nodal sensitivities with respect to the parameter pj , such that

∂T

∂pj

¯̄̄̄
(x,p)

≈ N(x)
∂T

∂pj

¯̄̄̄FEM
(p)

. (18)

The components of these nodal sensitivity vectors can be easily obtained from deÞnition
(16) because the Þnite element discretization support is the same as the one we use for the
temperature Þeld.

3.1.2. Evaluation of the regularization matrix. The regularization matrix L is the discrete
form of some differential operators [28, 11]. We choose a combination of the identity matrix I
and discrete approximations of derivative operators given by

LT L =
2X
k=0

wk L
T
k Lk , (19)
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where

L0 = I ∈ Rnp×np (20)

L1 =

 1 −1
. . .

. . .
1 −1

 ∈ R(np−1)×np (21)

L2 =

 1 2 −1
. . .

. . .
. . .

1 2 −1

 ∈ R(np−2)×np (22)

and wk ≥ 0 are weighting factors such that
2X
k=0

wk = 1. In Section 5, we study the solution

behavior on different regularization matrices.

3.1.3. Determination of the regularization parameter. The regularization parameter αIter >
0 is a priori chosen such that

1 ≥ αIter+1
αIter

≥ r, lim
Iter→∞

αIter = 0 (23)

with r < 1. This monotically decreasing sequence has as its Þrst term the optimal regularization
parameter for the Tikhonov regularization method [6]

α0 ∼ δ 2
2ν+1 , ν ∈ [1/2; 1] (24)

where δ is called the noise level.

3.1.4. Convergence criterion. Due to the instability of ill-posed problems, the iteration must
not be arbitrarily continued when iterative regularization methods are used. Instead, the
iterative process must be stopped at the right iteration because only for an appropriate
stopping iteration, a stable solution is yielded. As shown in Figure 2, while the observation
function (Equation (11)) decreases as the number of iterations increases, the error in the
parameters (assuming the real solution known) starts to increase after certain number of
iterations. Therefore, a stopping rule must be properly chosen.
We use the discrepancy principle as a stopping rule [6], that is, the iterative process is

repeated until the iteration Iterδ, such that°°° T(pIterδ ) − TObs
°°° ≤ τ δ < °° T(pIter) − TObs

°° 0 ≤ Iter < Iterδ , (25)

for some τ > 1.
The discrepancy principle is based on stopping as soon as the observation function is in the

order of the noise level, which means that the best approximation one should expect is in the
order of the data error.

3.2. The bound-constrained problem

We stated our inverse geometry problem as Þnding the location of the boundary ∂ΩT , which is
parametrized by a set of parameters p, such that a set of temperature measurements at points
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8 M.GONZALEZ AND M. B. GOLDSCHMIT

T!pIter" " TObs " pIter " pReal"

Iter Iter

Figure 2. Typical error behaviour.

inside the volume is matched. But the location of the boundary ∂ΩT may be subjected to some
geometry restrictions, typically the thermally unloaded geometry bounds. These geometry
restrictions can be expressed as geometry parameters bounds depending on the parametrization
adopted.
Consequently, as Equation (12) has the following variational form

FIter(p) =
1

2

°°°DT(pIter) ¡ p− pIter¢−∆TObs(pIter)

°°°2 + 1
2
α
°°L ¡

p− p∆¢°°2 , (26)

we reduce the original problem to a bound-constrained problem

min
p∈Rnp

FIter(p)

subject to gk(p) ≤ 0 k = 1, np
(27)

where gk(p) = pk − pmaxk are the geometry parameters inequality constraint conditions.
The Lagrange multiplier method [29] is used to convert the constraint minimization problem

into a simpler problem, such that

pIter+1 = arg min
p∈Rnp

³
FIter(p) + λk g

k
(p)

´
(28)

where λk are the Lagrange multipliers.
Therefore, Equation (12) is rewritten as·
DTT(pIter) DT(pIter)+α L

T L DGT
(rp)

DG(rp) 0

¸
·
·
δp
δλ

¸
=

·
DTT(pIter) ∆T

Obs
(pIter)+α L

TL
¡
p∆ − pIter¢−DGT

(rp)
rλ

−G(rp)

¸
(29)

where

DG(p) =
∂gk

∂pj

¯̄̄̄
(p)

∈ Rnac×np ; ∀ gk(p) > 0 , (30)
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INVERSE GEOMETRY HEAT TRANSFER PROBLEM 9

r indicates the iteration of the optimization subproblem, and nac is the number of active
constraints. Note that the dimension of the equation system to be solved changes as the
number of active constraints changes.
The solution is iteratively updated as follows

r+1p = pIter + βIter δp (31)
r+1λ = rλ+βIter δλ (32)

until a convergence criterion is satisÞed. As a result, we obtain an acceptable feasible solution
of pIter+1 from this optimization subproblem.

3.3. The algorithm

Direct problem

Ti
OBS i # 1,nobs

Iter # 0

#
T x i

OBS, pIter i # 1,nobs

DT!pIter"#

N!x1
OBS "

!T
!p1 !pIter "

FEM
$ N!x1

OBS "
!T
!pnp !pIter"

FEM

% & %

N!xn obs
OBS "

!T
!p1 !pIter "

FEM
$ N!xnobs

OBS "
!T
!pnp !pIter"

FEM

Evaluation of 
the sensitivity 

matrix

LT L # #
k#0

2

wk Lk
T Lk

!Iter # !0 ' rIter"1

!0 # "
2

2#$1

Iteratively regularized 
Gauss-Newton method solution

DT!pIter "
T DT!pIter "$! LT L DG! r p"

T

DG! rp" 0
'

"p
"!

#
DT!pIter "

T "T!pIter "
OBS $! LTL! p% " pIter " " DG! rp"

T r!

"G! rp"

r$1p # pIter $ $ Iter "p r$1!#r! $$ Iter "!

Convergence

Determination of the step length             $ Iter

pIter$1 # r$1p

Observations

Convergence

Determination of the active constraints

;

No

EndYes

Iter # Iter $ 1

Figure 3. Iterative algorithm of the nonlinear inverse problem.

In Figure 3, we show the iterative algorithm of the nonlinear inverse problem. There are
three different steps involved in the iterative process:
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10 M.GONZALEZ AND M. B. GOLDSCHMIT

� the solution of the direct problem,
� the evaluation of the sensitivity matrix, which requires to solve the direct problem several
times, and

� the determination of the iteratively regularized Gauss-Newton method solution of the
bound-constrained problem, which also requires to solve the direct problem several times
when the optimal step length is determined.

4. PARAMETRIZATION OF THE GEOMETRY

As stated in Section 3, the location of the unknown boundary ∂ΩT is parametrized by
p = (p1, . . . , pnp), a set of np parameters. In addition, each parameter pi has a base point
with coordinates BPpi and a direction vector DVpi ; therefore, the deÞnition of the unknown
boundary is given by

SPpi = BPpi + pi DVpi . (33)

Figure 4 shows an example of a set of base points and direction vectors which are used to
describe the location of the unknown boundary ∂ΩT . Note that the selection of their location
and orientation clearly depends on the geometry of each problem.

!

M1

M2

M3

M4

!!n

!!T

Surface points

Base points

Direction vectors

Figure 4. Schematic of the geometry parametrization.

Hence, given a set of surface points, the location of the unknown boundary ∂ΩT is
interpolated with a smooth function. We consider radial basis functions (RBFs) because they
impose few restrictions on the geometry of the interpolation points which do not need to lie
on a regular grid, and because they provide a smooth interpolation [12, 13, 14, 15, 16, 17].
Therefore, the direct heat transfer problem domain is perfectly deÞned.
Finally, since the direct problem must be solved several times for each inverse problem

iteration, we use remeshing techniques in order to discretize each different geometry.
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4.1. Radial Basis Functions

The problem consists in Þnding an interpolation function Φ (x) given a set of nsp points on
the unknown boundary ∂ΩT (where Φ = 0) and a set of nip points inside the volume Ω (where
Φ < 0). For this purpose, we choose RBFs deÞned by

Φ(x) = q (x) +
nX

i = 1

αi R(kx−xik) (34)

where n = nsp + nip; q(x) is a low degree polynomial; αi are real numbers; and R is the basis
function [12, 13, 14, 19] of which some examples are given below

1. Biharmonic spline, R(r) = r .
2. Thin plate spline, R(r) = r2 log(r) .

3. Gaussian, R(r) = e−cr
2

.
4. Triharmonic spline, R(r) = r3 .
5. Triharmonic thin plate spline, R(r) = r4 log(r) .
6. Multiquadratic, R(r) =

√
r2 + c2 .

7. Exponential, R(r) = er .

Among them, we use thin plate spline functions on R2 deÞned by

R(r) = r
2 log(r) (35)

q(x) = q(x1,x2) = d0 + d1 x1 + d2 x2 . (36)

As Φ(x) is chosen from the Beppo-Levi space of distributions on R2 with square integrable
second derivative, some conditions must be imposed on αi

nX
i = 1

αi =
nX

i = 1

αi x
i
1 =

nX
i = 1

αi x
i
2 = 0 . (37)

Therefore, the coefficients αi and dj are obtained from the following system of equations·
A Q
QT 0

¸µ
α
d

¶
=

µ
Φ
0

¶
(38)

where

Aij =
°°xi − xj°°2 log(°°xi − xj°°) , A ∈ Rn×n; (39)

Q =

 1 x11 x12
...

...
...

1 xn1 xn2

 ∈ Rn×3; (40)

αT =
¡
α1 · · · αn

¢ ∈ Rn; (41)

dT =
¡
d0 d1 d2

¢ ∈ R3; (42)

ΦT =
¡
Φ(x1) · · · Φ(xn)

¢ ∈ Rn . (43)

Note that Φ(xi) will be equal to zero except for the nip interior points.
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12 M.GONZALEZ AND M. B. GOLDSCHMIT

4.2. Remeshing algorithm

As we focus on bidimensional problems, we implemented the following simple but effective
remeshing algorithm:

1. The starting point is a structured mesh of quadrilateral elements, where different
materials may be deÞned. According to the deÞnition of the interpolation function Φ (x),
there will be some nodes located inside the volume Ω, where Φ < 0, and some located
outside, where Φ > 0. Remember that the unknown boundary ∂ΩT is deÞned as Φ = 0.

2. All the elements with three or four nodes inside the volume Ω (Φ < 0) remain in the
mesh (Step 1 of Figure 5).

3. A set of �boundary nodes� is deÞned. These nodes are the white (Φ < 0) and grey
(Φ > 0) nodes of Figure 5.

4. The nodes that belong to the set of �boundary nodes� and that are located outside the
volume Ω (Φ > 0) are collapsed generating triangular elements (Step 2 of Figure 5).

5. Each node that belongs to the set of �boundary nodes� is moved to the nearest point of
the unknown boundary ∂ΩT (Step 3 of Figure 5). The nearest point is calculated solving
the following non-linear optimization problem:

min
x
f(x) =

1

2

°°x− xNode°°2 (44)

subject to Φ(x) = 0 (45)

where xNode are the coordinates of the node that is being moved.

5. INDUSTRIAL APPLICATION

In this section, we develop the industrial application of estimating the location of the 1150◦C
isotherm in a blast furnace hearth, based on measurements of thermocouples located inside it.
Regarding the direct problem, we model a vertical section of the lining (Figure 6) with

axisymmetric Þnite elements because the geometry of the blast furnace hearth is rotationally
symmetric about an axis and is subjected to axisymmetric cooling conditions (Table I). The
Þnite element mesh has around 5000 isoparametric elements depending on the geometry solved
for each inverse problem iteration. Table II shows the temperature dependence of the hearth
refractories thermal properties considered in the direct model.

Cooling zone Convective cooling parameters
Lower hearth

spray
hwater= 150

W
m2◦C Twater= 20

◦C

Bottom cooling hair=

µ
152.5− 169.9 r

rmax
+45.3

h
r

rmax

i2¶
W

m2◦C Tair=
³
26 + 22 r

rmax

´
◦C

Table I. Cooling conditions.

Regarding the inverse geometry problem, there are 28 thermocouples located inside the blast
furnace hearth section (as shown in Figure 6) so the number of observations (nobs) is equal to
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1°

2°3°

Φ< 0

!

M1

M2

M3

M4

detail

Φ< 0

Φ< 0

Φ= 0

Φ= 0

Φ= 0

Φ> 0

Φ> 0Φ> 0

!! n!! n

!! T!! T

Boundary nodes (Φ < 0) Boundary nodes (Φ > 0)Nodes from the structured mesh

Figure 5. Schema of the remeshing algorithm.

Refractories Thermal Conductivity
SiC Castable 20.00W/mK

Mortar 1.00W/mK

Graphite EGF

T=303K 150.0W/mK

T=773K 90.0W/mK

T=1273K 60.0W/mK

Semi Graphite

BC-30

T=293K 36.00W/mK

T=473K 34.80W/mK

T=673K 33.10W/mK

T=873K 32.00W/mK

T=1073K 31.50W/mK

Carbon BC-7S

T=873K 14.12W/mK

T=1073K 14.99W/mK

T=1273K 15.63W/mK

T=1473K 16.09W/mK

Refractories Thermal Conductivity
SiC / Alumnina 7.20W/mK

High Fired

Super Duty

T=673K 1.300W/mK

T=873K 1.400W/mK

T=1073K 1.500W/mK

T=1473K 1.600W/mK

EG Ramming

T=293K 25.00W/mK

T=473K 20.00W/mK

T=873K 11.00W/mK

T=1273K 8.00W/mK

T=1573K 7.00W/mK

Carbon BC-5

T=873K 16.96W/mK

T=1073K 17.66W/mK

T=1273K 18.13W/mK

T=1473K 18.36W/mK

Table II. Material Properties.

28. The number of parameters used to parametrize the location of the unknown boundary (np)
is chosen to be 7. As we said in the previous section, the selection of a set of base points and
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Steel shell
SiC Castable
Mortar
Graphite EGF
Semi Graphite BC30
Carbon BC-7S
High Fired Super Duty
SiC / Alumina
EG Ramming
Carbon BC-5

Air (Bottom cooling)

Lower
hearth
spray

Lower
hearth
spray

Lower
hearth
spray

Lower
hearth
spray

Thermocouple

Figure 6. Vertical section of the blast furnace hearth.

direction vectors depends on the geometry of each problem. In our problem, we select them
depending also on the position of the thermocouples.
Figure 7 shows the set of base points and direction vectors which are used to describe the

location of the 1150◦C isotherm, where the set of surface points is interpolated using thin plate
spline RBFs (see Section 4.1).
In order to validate the solution of the algorithm against measurement uncertainties, we

simulate measurements with different levels of noise following these steps:

1. We deÞne a �real geometry� described by a set of geometry parameters pReal.
2. We calculate the temperature observations that correspond to the �real geometry�,
TReal, assuming error free measurements.

3. We simulate measurements with different levels of noise (noise = 5%, 10%, 15%) as
follows

TObsi = TReali (1+ ξ · noise) (46)

where ξ ∈ [−1; +1] is a uniformly distributed random disturbance.

Then, we solve the inverse geometry heat transfer problem for each set of observations, using
as initial guess the regularization geometry p0 = p∆, and we evaluate the following relative
errors

εobs =

°° T(pIter) − TObs
°°

kTObsk (47)
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Base Point 
and 

Direction Vector

Thermocouples

Surface points

!!x" # 0

!!x" & 0

!!x" ' 0

Base points

Figure 7. Parametrization of the unknown boundary location.

εgeom =

°° pIter − pReal
°°

kpRealk . (48)

Finally, we focus on three aspects of the problem:

� The determination of the optimal regularization matrix for a problem with no geometry
restrictions.

� The algorithm behavior when the problem is subjected to some geometry restrictions.
� The error behavior of the solution.

5.1. Determination of the optimal regularization matrix

We study the behavior of the algorithm on different regularization matrices. For this purpose,
we propose Þve regularization matrices as linear combinations of L0, L1, L2 (Equation 19) and
solve the inverse geometry heat transfer problem for each case, assuming a problem with no
geometry restrictions.
Tables III, IV, V and VI show the relative errors (εobs and εgeom) and the number of

iterations required to solve the problem for each set of weighting factors (w0, w1, w2) and for
each noise level.
Analyzing these results, we conclude that:

� As is expected, the error on the estimated geometry, εgeom, increases as the noise
increases.
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16 M.GONZALEZ AND M. B. GOLDSCHMIT

Case w0 w1 w2 εobs [%] εgeom [%] Iter
1 1.00 0.00 0.00 0.164 0.455 4

2 0.00 1.00 0.00 0.162 0.397 4

3 0.00 0.00 1.00 0.151 0.352 4

4 0.00 0.50 0.50 0.156 0.373 4

5 0.50 0.50 0.00 0.188 0.537 4

6 0.50 0.00 0.50 0.187 0.513 4

Table III. Problem with no geometry restrictions - noise = 0%.

Case w0 w1 w2 εobs [%] εgeom [%] Iter
1 1.00 0.00 0.00 2.698 4.317 3

2 0.00 1.00 0.00 3.041 4.816 3

3 0.00 0.00 1.00 2.925 2.807 3

4 0.00 0.50 0.50 3.666 4.631 3

5 0.50 0.50 0.00 2.729 4.395 3

6 0.50 0.00 0.50 3.647 4.571 3

Table IV. Problem with no geometry restrictions - noise = 5%.

Case w0 w1 w2 εobs [%] εgeom [%] Iter
1 1.00 0.00 0.00 6.267 11.938 3

2 0.00 1.00 0.00 6.228 11.686 3

3 0.00 0.00 1.00 7.009 7.760 3

4 0.00 0.50 0.50 5.074 17.152 3

5 0.50 0.50 0.00 7.483 12.266 3

6 0.50 0.00 0.50 6.485 12.840 3

Table V. Problem with no geometry restrictions - noise = 10%.

Case w0 w1 w2 εobs [%] εgeom [%] Iter
1 1.00 0.00 0.00 5.216 13.638 3

2 0.00 1.00 0.00 4.736 9.639 3

3 0.00 0.00 1.00 5.055 8.311 3

4 0.00 0.50 0.50 5.347 8.854 3

5 0.50 0.50 0.00 4.632 11.424 3

6 0.50 0.00 0.50 5.160 10.417 3

Table VI. Problem with no geometry restrictions - noise = 15%.

� The algorithm is equally stable for different regularization matrices when measurements
have a low level of noise because εgeom remains stable in all cases (Table IV).

� The optimal regularization matrix appears to be (0.00, 0.00, 1.00) because the solutions
have the lowest errors on the estimated geometry, εgeom, particularly when measurements
have a high level of noise (Tables V and VI ).

� Even though 15% is a high level of noise, the geometry is estimated with good accuracy
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Exact geometry
Regularization geometry
Error = 5%
Error = 10%
Error = 15%

Figure 8. Estimated geometry for different levels of noise, using the optimal regularization matrix.

in the context of the industrial application (Figure 8).

5.2. The bound-constrained problem

We also study the behavior of the algorithm on different regularization matrices but, as our
aim is to consider the bound-constrained problem, we only analyze the noise level for which
the iterative solution process yields unfeasible solutions due to its instability. This is the case
of noise = 10%.
Table VII shows the relative errors (εobs and εgeom) and the number of iterations required

to solve the bound-constrained problem for each set of weighting factors (w0, w1, w2).

Case w0 w1 w2 εobs [%] εgeom [%] Iter
1 1.00 0.00 0.00 7.496 9.855 4

2 0.00 1.00 0.00 7.353 7.198 4

3 0.00 0.00 1.00 6.630 5.798 3

4 0.00 0.50 0.50 7.161 5.094 5

5 0.50 0.50 0.00 7.914 8.063 4

6 0.50 0.00 0.50 7.236 5.759 5

Table VII. Problem with geometry restrictions - noise = 10%.

Analyzing these results, we conclude that:

Copyright c° 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1�22
Prepared using nmeauth.cls



18 M.GONZALEZ AND M. B. GOLDSCHMIT

� The solution is clearly improved and stabilized for all the regularization matrices when
the bound-constrained algorithm is used (Tables V and VII).

� The optimal regularization matrix appears to be (0.00, 0.00, 1.00), as in the problem with
no geometry restrictions.

� More iterations are needed to reach convergence, which is an expected conclusion because
the constraints are iteratively imposed.

� The geometry is estimated with good accuracy in the context of the industrial application
(Figure 9).

Exact geometry
Regularization geometry
Error = 10%

Figure 9. Geometry estimated by the bound-constrained algorithm, using the optimal regularization
matrix..

5.3. Error behavior of the solution

We study the error behavior of the solution considering the optimal regularization matrix
(0.00, 0.00, 1.00) and the case of noise = 10%, noise level for which the iterative solution
process yields unfeasible solutions. Moreover, as this behavior depends on multiple factors, we
divide the study in three parts.
In the Þrst part of the study, we analyze the error behavior of the solution calculating an

appropriate step length (Section 3.1) and considering no geometry restrictions. In the second
part of the study, we also calculate an appropriate step length but we consider some geometry
restrictions. Finally, in the third part of the study, we use a constant step length equal to 1.00
in order to evaluate the importance of calculating an appropriate step length.
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Figures 10, 11 and 12 show the evolution of the relative errors (εobs and εgeom) during the
iterative process.
Analyzing these results, we conclude that:

� The typical instability of ill-posed problems, which cases εgeom to increase after some
iterations while εobs always decreases, clearly occurs in the Þrst case (Figure 10). This
conÞrms the use of the discrepancy principle as a stopping rule for the iterative process,
as we explained in Section 3.1.4.

� The solution is strongly stabilized when the bound-constrained algorithm is used (Figure
11). Even in this case, the discrepancy principle is an efficient stopping rule for the
iterative process.

� The behavior of the solution is not good when a constant step length equal to 1.00 is
used (Figure 12). Therefore, as is expected, the selection of an appropriate step length
makes sense due to the highly non-linear nature of the problem.
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0 1 2 3 4 5 6 7 8 9 10 11
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20%

30%

40%

50%

60%

0 1 2 3 4 5 6 7 8 9 10 11

(geom

Iterations Iterations

Figure 10. Error behavior of the solution, calculating an appropiate step length and considering no
geometry restrictions.

6. CONCLUSIONS

We have developed an inverse geometry heat transfer model for estimating the location of
the 1150◦C isotherm in a blast furnace hearth. The observations of the inverse problem are
temperature measurements at points inside the object and the unknown is the geometry of the
volume where the problem is deÞned. We considered not only the problem with no geometry
restrictions but also the bound-constrained problem. Due to the typical instability of ill-posed
problems and the nonlineality of our inverse problem, we have used the iteratively regularized
Gauss-Newton method.
The inverse geometry problem is based on a radial basis functions geometry representation.

For this purpose, the location of the unknown boundary has been parametrized by a set
of parameters and described with radial basis functions. We considered RBFs because they
impose few restrictions on the geometry and because they provide a smooth interpolation.
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Figure 11. Error behavior of the solution, calculating an appropiate step length and considering some
geometry restrictions.
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Figure 12. Error behavior of the solution, using a step length equal to 1.00 and considering no geometry
restrictions.

The behavior of the algorithm on different regularization matrices has been studied analyzing
its stability against simulated measurements with different levels of noise.
We can conclude, from the results of the analyzed cases, that the optimal regularization

matrix appears to be L2 (the discrete approximation of the second derivative operator) for
both the problem with no geometry restrictions and the bound-constrained problem. We also
conclude that the solution is clearly improved and stabilized if the bound-constrained algorithm
is used when the iterative solution process yields unfeasible solutions due to the instability of
the problem.
On the basis of our numerical experimentation, we conÞrmed that a stopping rule for the

iterative process must be used, and that the selection of an appropriate step length makes
sense due to the highly non-linear nature of the problem.
Finally, as the geometry is estimated with good accuracy in the context of the industrial

application, we conclude that the algorithm developed is a reliable tool for estimating the
location of the 1150◦C isotherm in a blast furnace hearth.
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