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In this paper we discuss the finite element modeling of Composite Overwrapped Pressure Vessels
(COPVs) which are used in the aerospace industry, when high strength/weight ratios are required, for con-
tainers filled with pressurized fluids. The COPVs that we analyze are composed by a thin metallic liner
and an external reinforcement made with high strength fibers that are wrapped around the liner embed-
ded in an epoxy resin. It is shown in the paper that for a reliable description of the vessels behavior under
internal pressure it is required to use a model that incorporates the mechanical behavior of the liner, of
the fibers and of the resin matrix (micromechanical model).

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The modern trend for the construction of pressure vessels with
very high strength/weight ratio is to use Composite Overwrapped
Pressure Vessels (COPVs). These pressure vessels, mostly used in
the aerospace industry, are constructed using a very thin metallic
or non-metallic liner that provides sealability for the contained
pressurized fluid, and an external reinforcement composed by high
strength fibers (e.g. carbon fibers) that provides the required vessel
strength.

During a vessel fabrication, several fiber plies are used, each of
them with a defined winding angle. The fibers in each ply are
coiled embedded in a resin and the complete assembly is cured
in a convection furnace to get the matrix final mechanical
properties.

A thorough description of the fibers winding geometry and
strength of the resulting laminated shell was provided by Vasiliev
in [1]. A number of regulation agencies have produced standards
for the design and construction of COPVs, for example the Ameri-
can Institute of Aeronautics and Astronautics (AIAA) [2] and the
European Cooperation for Space standardization (ECSS) [3].

In the present paper we discuss the finite element modeling of
the COPVs.

In the second section, following the work of Vasiliev, we present
a summary of the fiber plies geometry for cylindrical vessels with
ellipsoidal heads and for spherical vessels. In the third section we
present two alternatives for simulating, using finite element mod-
els, the COPVs fibers reinforcement,

� a standard elastic - orthotropic material model; with material
properties that average the properties of the fibers and of the
matrix;

� a micromechanical material model for each ply, with a proper
modeling of the fibers behavior using an elastic - orthotropic
model and of the matrix behavior using an anisotropic – plastic
model to simulate the loss of stiffness due to the matrix crack-
ing [1].

Both material models were developed with the general purpose
finite element code ADINA [4] using its quadrilateral shell element
[5]. In the fourth section of this paper we discuss the computa-
tional results obtained when modeling,

� a split ring test, which is the lab test used to characterize the
strength of a fiber laminate;

� a cylindrical vessel with ellipsoidal heads under internal
pressure.

For both cases we compare the numerical results with experi-
mental results to cross validate the model and the manufacturing
procedures.

We demonstrate that the new micromechanical model very
much improves the results that are obtained using the standard
elastic - orthotropic material model.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2019.04.007&domain=pdf
https://doi.org/10.1016/j.compstruc.2019.04.007
mailto:edvorkin@simytec.com
https://doi.org/10.1016/j.compstruc.2019.04.007
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc
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2. Winding geometry

Each laminate is fabricated by coiling carbon fibers, embedded
in an epoxy resin, around an aluminum liner. In this section we dis-
cuss the geometry of the laminate following [1].

We draw the meridian of a shell of revolution and in what fol-
lows we will use the following normalized notation (see Fig. 1),

sina ¼ � dz
ds

; r
� ¼ r

R
; z

� ¼ z
R
; z

�0 ¼ d z
�

d r
�

We consider a general fibrous shell of revolution with fibers fol-
lowing trajectories with angles uðrÞ with the meridians, as shown
in Fig. 2.

The equilibrium of the fibers, shown in Fig. 2, is determined
neglecting the contribution of the liner and using (netting analysis)
[1],

p p r2 ¼ n t sina rð Þ cosuðrÞ: ð1Þ
In the above equation p is the pressure inside the vessel, t is the

tension in the fibers and n is the number of fibers in the shell cross
section.

The fiber trajectories are defined by the Clairaut equation (geo-
desic lines),
Fig. 1. Meridian of a shell of revolution [1].

Fig. 2. Isotensoidal shell of revolution [1].
r
�

sinu r
�� � ¼ sinu Rð Þ: ð2Þ

The equations that define the shell meridian for the ellipsoidal
shell are [1],

z
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Z r�

1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 tan2uR

q
� 1

� �
: ð3:bÞ

The above equations are only valid for 0 � u Rð Þ < uo where,
uo ¼ 0, corresponds to a shell with fibers along its meridians.
uo = 54.7356�, the equation degenerates into a circular cylindri-

cal shell [1].
At the polar hole of the vessel there is usually a fitting, as shown

in Fig. 3; the radius rf ¼ 1:225ro, indicated in the figure, corre-
sponds to the meridian inflection point [1].

Winding a fibrous band of width w and thickness d placed on a
surface of revolution specified by the equation z ¼ zðrÞ produces a
fibrous shell with a thickness defined by,

h rð Þ ¼ n d w
2 p r cosuðrÞ : ð4:aÞ

which can be rewritten as,

h rð Þ ¼ h Rð ÞR cosuðRÞ
r cosuðrÞ : ð4:bÞ

It is immediate that the above equation fails in the neighbor-
hood of the polar hole (r ¼ roÞ because, lim

uðrÞ!p=2
h rð Þ ¼ 1.

Calling h
�
¼ h

hðRÞ in the neighborhood of the polar hole the thick-

ness is approximated using,

h
�
a r

�� � ¼ ao þ a1 r
�þa2r

�2 þ a3r
�3: ð5Þ

The parameters of the polynomial expansion are determined
using the following four conditions,

1. For r
� ¼ r

�
o, it is used either h

�
a r

�
o

� �
¼ 2or experimental values if

they are available;

2. Defining r
�
2w ¼ r

�
o þ 2w

R , the continuity between the two thick-

ness definitions is, h
�
a r

�
2w

� �
¼ h

�
ðr�2wÞ;
Fig. 3. Fitting at the vessel polar hole [1].



J.P. Canal et al. / Computers and Structures 220 (2019) 1–13 3
3. The slope continuity is,
dh
�
a r

�ð Þ
dr

� �
r
�
2w

¼ d h
�

r
�ð Þ

dr

� �
r
�
2w

;

4. The mass equivalency is:
R r

�
2w

r
�
o

h
�
aðr

�Þd r
� ¼ R r

�
2w

r
�
o

h
�
ðr�Þd r

�
.

In Fig. 4 we present a graph of the resulting laminate thickness
distribution for a 600 mm spherical COPV.

Finally, in Figs. 5 and 6 we present photographs of the winding
process implemented at an Argentinian company. In the first case
Fig. 4. Laminate thickness distribution in a spherical COPV.

Fig. 5. Winding of a cylindrical COPV.

Fig. 6. Winding of a spherical COPV.
the photograph corresponds to the fabrication of a cylindrical shell
with ellipsoidal heads and in the second case to the fabrication of a
spherical shell.

3. Modeling the fibers reinforcement mechanical behavior

As mentioned in the Introduction we used two material models,
a standard macromechanical material model and a new microme-
chanical material model, to analyze the mechanical behavior of the
COPVs fibers reinforcement.

3.1. The macromechanical model

In this model the composed behavior of the different reinforce-
ment plies is simulated using an orthotropic elastic model with
mechanical properties that average the fibers and matrix mechan-
ical properties [6].

This model cannot introduce into the mechanical simulation the
matrix cracking; which, as reported in [1] and also observed in the
results of our numerical models, has a no negligible effect on the
structural behavior of the COPVs. Also, in linerless COPVs, the
matrix provides the required sealability and, therefore, it is neces-
sary to predict quite accurately the matrix cracking which is the
limiting factor of the COPVs ability to resist internal pressure.

3.2. The micromechanical model

This model introduces for each ply two components,

� an elastic orthotropic layer that simulates the fibers behavior;
� an anisotropic plastic layer (Hill plasticity criterion [7]) that
simulates the matrix behavior, incorporating a description of
its cracking.

Following [1] let us consider a simple material with only 2 lay-
ers: layer (1) representing the fibers and layer (2) representing the
matrix.

In what follows we call dir-1 the fibers direction and dir-2 the
other direction that defines the layers plane. Since the fibers orien-
tation is normally not constant our ad hoc pre-processor defines
for each element dir-1, dir-2 and dir-3.

The two layers are assembled using the same shell element
nodes (parallel assembly); hence, they are both under the same
deformation.

3.2.1. Fibers elastic behavior
Using Voigt notation, for an elastic orthotropic layer, we write

Hooke’s law as,

r ¼ C e: ð6Þ
where

r ¼ r11 r22 r33 r12 r23 r31½ �T ;

e ¼ e11 e22 e33 2e12 2e23 2e31½ �T :
The elastic compliance matrix;C�1, is [6],

C�1 ¼

1
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E2

�t13
E3

0 0 0
�t21
E1

1
E2

�t23
E3

0 0 0
�t31
E1

�t32
E2

1
E3

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G23

0

0 0 0 0 0 1
G31

2
666666666664

3
777777777775
: ð7Þ



Fig. 7. Structural effect of the matrix fracture.

Fig. 8. Split disk sample.

Fig. 9. Split ring test assembly.
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In the above,

� E1; E2; E3: Young’s moduli in dir-1, dir-2 and dir-3 respectively.
� tij: Poisson’s ratio for transverse strain in the dir-i when
stressed in the dir-j; that is, tij ¼ �eii

ejj
.

� G12;G23;G31: shear moduli in the 1–2, 2–3 and 3–1 planes
respectively.

In the orthotropic material there are a total of 9 independent
constants and it can be easily shown that tji

Ei
¼ tij

Ej
[6].

There are a number of restrictions for the elastic orthotropic
material constants that are properly discussed in [6].

Considering the two layers: fibers layer and matrix layer that
simulate the behavior of a composed ply we can write,

r1 ¼ C1 e; ð8:aÞ

r2 ¼ C2 e: ð8:bÞ
The stress resultants are,

N ¼ r1h1aþ r2h2a: ð9Þ
In Eq. (9) h1 and h2 are the thickness of each layer and a is the

layers width. For the equivalent layer we define an equivalent

stress tensor r
�
; hence,

N ¼ r
�

h1 þ h2ð Þa ð10Þ
Therefore,

r
� ¼ h1

h1 þ h2
C1 þ h2

h1 þ h2
C2

� �
e: ð11Þ

The above term between brackets is the equivalent constitutive
matrix ðCeqÞ.

3.2.2. Matrix plastic behavior
Using an elasto-plastic model we simulate the loss in stiffness

induced by the matrix cracking [1]; for this purpose we use the Hill
anisotropic yield criterion [7] and an associated flow rule [8].

Since in dir-1 the loads are mostly carried by the fibers, the
matrix cracking can be considered to be triggered when,

r
�
22

r y
22

 !2

þ r
�
12

r y
12

 !2

¼ 1: ð12Þ
In Eq. (12) r y
22 and r y

12 are material properties and their mean-
ing is evident from that equation.

From Eq. (8),

r1 ¼ C1 C2
� ��1

r2: ð13Þ

Replacing in (11) we get,

r
� ¼ h1

h1 þ h2
C1 C2
� ��1

þ h2

h1 þ h2

� �
r2: ð14Þ

Taking into account that as stated above we are dealing with a
plane stress ply and that the constitutive tensors of both layers are
collinear,

r
�
22 ¼ h1

h1 þ h2
C1
12S

2
11 þ C1

22S
2
12

� �
r2

11

þ h1

h1 þ h2
C1
12S

2
12 þ C1

22S
2
22

� �
þ h2

h1 þ h2

� �
r2

22: ð15Þ

In the above equation, S2 ¼ C2
� ��1

.

In Fig. 7 we display the result obtained when modeling a cylin-
der under internal pressure with three plies (36�, �36�, 90�). It can
be observed in the load-displacement curve the kink indicating the
matrix fracturing.



Table 1
Split disk tests.

Batch Winding angle % fibers in volume % Super position Fibers equivalent rult [MPa] Average ultimate tensile load [N]

1 = 2 88.38� 69 0 3,381 74,284
3 89.51� 74 20 3,626 99,529
4 88.38� 80 0 3,920 71,953
5 88.38� 62 0 3,038 85,711

Fig. 10. Split ring model generation.

Fig. 11. Failure prediction: macromechanical model.
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Fig. 12. Determination of the failed fibers with the macromechanical model.

Fig. 13. Failure prediction: micromechanical model.
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Much research work is nowadays being developed to include in
the numerical simulations the intra-laminar damage [9,10].
4. Computational and experimental results

In this section we discuss two cases,

� a split ring test;
� a cylindrical COPV with ellipsoidal heads under internal
pressure.
For both cases we compare the computational results with
experimental results.
4.1. The split ring test

The standard test for measuring the strength of a fiber rein-
forced laminate is the split disk test [11].

The samples, shown Fig. 8, are assembled in a tensile machine
with a metal split disk that pulls from the samples (Fig. 9).



Fig. 14. Determination of the failed fibers with the micromechanical model.

Fig. 15. The 50 lts COPV.
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Five batches of samples were constructed as per Table 1; in this
table we also present the average ultimate tensile load for each
batch.

All the experimental tests were performed at Materials and
Structures Lab, Engineering School, University of Buenos Aires4.

In the above table,

rult ¼ %fibers in volumeð ÞULT ð16Þ
4 The tests were planned and executed by Germán Kokubu, Ezequiel Poodts and
Professor Alejandro Verri.
where ULT is the tensile strength of the carbon fiber (for the cases
under analysis ULT = 4900 MPa).

Two finite element models were developed using the MITC4 [5]
layered shell element in ADINA [4] to simulate the fibers reinforce-
ment mechanical behavior: one model was developed using the
macromechanical model and the other one using the microme-
chanical model.

To post-process the results we used the Tsai-Hashin failure cri-
terion [4], which indicates that a ply fails if one of the following
conditions is fulfilled,



Fig. 16. Laminate configurations for the 50 lts COPV.

Fig. 17. Thickness distributions for the 50 lts COPV.
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r11

rLþ
11

� 1 ðif r11 > 0Þ Tensile fibers failure ð17:aÞ

r11

rL�
11

� 1 ðif r11 < 0Þ Compressive fibers failure ð17:bÞ

r22

rLþ
22

 !2

þ r12

rL
12

� �2

� 1 ðif r22 > 0Þ Tensile matrix failure

ð17:cÞ

r22

2rL
23

 !2

þ 1� rL�
22

2rL
23

� �2
" #

r22

rL�
22

þ r12

rL
12

� �2

� 1 if r22 < 0ð Þ Compressive matrix failure ð17:dÞ
In the above, for each ply, the following properties are defined

for each particular combination fibers – matrix,

rLþ
11 : limit tensile stress in the 1-direction (fibers direction);

rL�
11 : limit compressive stress in the 1-direction (fibers

direction);
rLþ

22 : limit tensile stress in the 2-direction (orthogonal to the
fibers direction);
rL�

22 : limit compressive stress in the 2-direction (orthogonal to
the fibers direction);
rL

12: limit shear stress in the plane 1–2;
rL

23: limit shear stress in the plane 2–3.

In Fig. 10 we show a scheme of the finite element model which
is composed by 32,800 MITC4 layered elements [5 12].
4.1.1. Macromechanical model results
In Fig. 11 we present, for batches 1 and 2 which have an ulti-

mate load off 74,824N, the sample zones where matrix or fibers
failure are predicted using the macromechanical model together
with the Tsai-Hashin failure criterion.

For the other batches the failure predictions are identical within
a few tenths of a millimeter.

Post-processing, for the different batches, the finite element
results together with the data in Table 1, we get the curves in
Fig. 12 from which we can determine the maximum amount of



Fig. 18. Pressure cycle.

Table 2
6061-T6 aluminum liner.

E [GPa] m ry [MPa] eu [%] ru [MPa]

68.9 0.33 242 11.5 310

Table 3
Laminate mechanical properties.

Model Material E1 [MPa] E2 [MPa] G [MPa]

Macromechanical Laminae 103,500 10,000 5,000
Micromechanical Fibers 230,000 0 0

Matrix 230 4,327 11,111

Fig. 19. Macromechanical model. Princ
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fibers that can fail without implying a complete failure of the sam-
ple. It is important to notice that it is not enough to have a mini-
mum amount of fibers failure to have a structural failure.
4.1.2. Micromechanical model results
In Figs. 13 and 14 we again present the results obtained analyz-

ing the split ring tests listed in Table 1; but this time we performed
the numerical analyzes using the micromechanical material model.

Comparing Fig. 12 with Fig. 14 is quite obvious that for the split
ring test both material models provide results that for practical
purposes are coincident.
ipal stresses predicted in the liner.



Table 4
Failure pressures predicted using the micromechanical model.

Sticking friction Sliding contact
Liner 60 MPa 43 MPa

Cylindrical section 1st circumferential layer 52 MPa 48 MPa
1st helicoidal layer 52 MPa 42 MPa

Ellipsoidal head 1st helicoidal layer 55 MPa 25 MPa

Fig. 20. Failure due to plastic deformation in the liner.

Fig. 21. Stresses in the first circumferential layer of the cylindrical section.
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Fig. 22. Stresses in the first helicoidal layer of the cylindrical section.

Fig. 23. Stresses in the first helicoidal layer of the ellipsoidal head (sticking friction).

J.P. Canal et al. / Computers and Structures 220 (2019) 1–13 11
4.2. Cylindrical COPV with ellipsoidal heads under internal pressure

In Fig. 15 we present a sketch of a 50 lts COPV.
We describe its modeling and experimental test in the present

sub-section.
The laminate configuration is indicated in Fig. 16 and the result-

ing thickness distribution in Fig. 17. The percentage of fibers in the
volume was 45%.

We compare the results with experimental results aiming at a
cross validation,

� validation of the numerical results: when the numerical results
match the experimental determinations, as usual, we validate
the numerical model;

� validation of the manufacturing procedures: when the experi-
mental determinations match the numerical results we can
assess that the manufactured COPV works as planned in the
design and therefore the manufacturing procedures produced
a product within the specified features.
The design of this COPV has to fulfil,

� Maximum Expected Operating Pressure (MEOP): 25 MPa;
� Proof Pressure (auto-frettage): 37.5 MPa;
� Minimum Burst Pressure 50 MPa.

Following [2] the test cycle in Fig. 18 was established.
Only one cycle was modeled because the computational results

indicate that no increase in the liner accumulated plastic deforma-
tion is observed during the cycling (shake down behavior).

The strength limit of the vessel is reached when either the fibers
reach its ultimate tensile strength or when the equivalent plastic
strain in the liner reaches at any point its ultimate strain.
4.2.1. The finite element model
Two finite element models were developed, one using the

macromechanical model for the laminate material and the other
one using the micromechanical model.



Fig. 24. Stresses in the first helicoidal layer of the ellipsoidal head (sliding contact).
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For both cases,

� the liner was modeled using MITC4 shell elements together 3D
8-node elements for the end-bosses;

� the laminate was modeled using layered MITC4 elements;
� the two models included a contact condition between the lam-
inate material and the liner. In order to account for the uncer-
tainty on the friction coefficient two cases were considered
for each model: sticking friction and sliding friction.

The mechanical properties of the aluminum liner (6061-T6)
[13] are shown in Table 2 and the mechanical properties consid-
ered for both material models are listed in Table 3.
Fig. 25. Instrume
The ultimate stresses for laminate are,

r90�
u ¼ 0:8 	%volfibers 	 rfibers

u ;
ru
u ¼ 0:8 	 0:8 	%volfibers 	 rfibers

u :

The factors – 0.8 – are specified in [1] to take into account the
deterioration of the fibers during the manufacturing process.
4.2.2. Macromechanical model: finite element results
In Fig. 19 we show the principal stresses predicted by the finite

element model. It can be seen that for the sticking friction assump-
tion the ultimate liner stress is reached for an internal pressure of
30 MPa while for the sliding contact assumption the ultimate liner
stress is reached for an internal pressure of 43 MPa.

The macromechanical model overestimates the peak stresses
induced by the shape of the vessel; the overestimation comes from
the fact that the laminate behavior is simulated using a pure elastic
model.

Hence, we decided to exclusively use the micromechanical
model to evaluate the COPVs mechanical strength. The agreement
between the micromechanical model predictions and the experi-
mental results, to be discussed in the next sub-section, confirmed
the validity of our decision.
4.2.3. Micromechanical model: finite element results
In Table 4 we indicate the pressures that produce failure in the

liner and in the laminate.
For the sticking friction condition the liner can reach an internal

pressure of 60 MPa without failure and for the frictionless condi-
tion the liner reaches the maximum plastic deformation that the
aluminum can undergo for an internal pressure of 43 MPa (Fig. 20)

In Figs. 21–23 we present some typical stress distributions in
the laminates.

Even though for the condition of sliding contact the maximum
allowable stress at the first helicoidal layer of the laminate is
reached at only 25 MPa (see Table 4) the material volume affected
by those stress is very limited and therefore it is not considered an
indication of the vessel failure (see Fig. 24).
nted COPV.



Fig. 26. Acoustic emission.
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4.2.4. Experimental validation of the finite element results
A COPV was tested with the pressure cycle in Fig. 18. In Fig. 25

we show the testing set up, which was instrumented with strain
gages and microphones to detect acoustic emissions5.

The measured burst pressure was 54 MPa while the finite ele-
ment predicted burst pressure was 52 MPa (sticking friction condi-
tion); hence, pburst

FEM =pburst
experimental ¼ 0:96.

It is very interesting to observe the agreement between the
acoustic emission output and the numerical results. In Fig. 26 the
‘‘counts” of the acoustic emission test are compared with the finite
element results for the liner plastic volume and for the matrix
cracked volume, it is evident that the three results show the same
qualitative behavior.

5. Conclusions

The finite element results and experimental results shown in
this paper indicate that the modeling of COPVs should be devel-
oped incorporating into the model,

� the liner (metallic) elasto-plastic behavior,
� the fibers elastic orthotropic behavior,
� the matrix plastic anisotropic behavior to model the matrix
cracking.

It was shown that micromechanical material model of the fibers
reinforcement, developed in this paper, is a reliable finite element
procedure for the calculation and design of COPVs.

Finally, another important conclusion is that the acoustic emis-
sion test can be used as a very valuable tool for extracting as much
information as possible from the COPVs qualifications tests.
5 The acoustic emission detection was carried out by the CNEA (National Atomic
Energy Commission).
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