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Abstract

The strain localization in J2 materials with damage evolution is modeled using embedded strong
discontinuity modes. In this procedure an heuristic bandwith scale is adopted to model the damage
evolution in the shear bands. The bifurcation triggering conditions and band growth directions are
studied for these materials.

The resulting formulation does not require a specific mesh refinement to model a localization, provides
mesh independent results also insensitive to element distortions and allows to calibrate the model response
using experimental data.

The formulation capability is shown embedding the strong discontinuity modes into quadrilateral and
higher order elements.

Keywords: ductile fracture, plasticity, localization, shear band, strong discontinuity, multiple scales for-
mulation.

1 Introduction

Ductile fracture is a complex phenomena normally preceded by a strong plastic deformation localized in
a very narrow zone as schematically described in Fig. 1. This localized plastic deformation induces lo-
cal material damage in the localization zones while the material outside these zones remains almost un-
damaged, see [Backofen, 1972], [Gurson, 1975], [Gurson, 1977], [Tvergaard et al., 1981], [Tvergaard, 1981],
[Tvergaard, 1982], [Tvergaard and Needleman, 1981], [Hutchinson and Tvergaard, 1981] and [Needleman, 1989].

The use of standard finite elements to model the behavior of plastic localization zones presents the problem
that the elements size imposes the band scale; producing therefore mesh dependent models. Some attempts
to model ductile fracture using standard finite element techniques have been developed; in these attempts the
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mesh was graded according to micromechanical parameters, see [Batisse et al., 1987], [Ishikawa et al., 2000]
and [Ishikawa et al., 2001].

In the modeling of ductile fracture there are two main issues:

• The simultaneous modeling of the localized plastic deformations and of the elastoplastic continua; that
is to say, the modeling of multiple coexisting scales.

• The realistic description of the damage evolution in the material inside the band.

In what follows we summarize some of the techniques that were proposed in the literature for the multi-
scale modeling of localization phenomena.

The enhancement of the strain fields used in the finite element formulation was discussed in [Ortiz et al., 1987],
where a strain jump function was added to each element where the localization criteria was satisfied. Different
enhancement techniques were also proposed in [Belytschko et al., 1988], [Simo et al., 1993], [Armero and Garikipati, 1996]
[Armero and Garikipati, 1995] and [Sluys, 1997].

Discontinuous displacement fields were used to represent the strain jump across the band in the strong dis-
continuity approach, see [Oliver, 1996a], [Oliver, 1996b], [Oliver et al.,1999] and [Oliver and Huespe, 2004].
To model shear bands using this technique a specific strain softening material law was defined for the material
inside the bands.

X-FEM techniques were used in [Moës et al., 1999], [Samaniego and Belytschko, 2005] and [Areias and Belytschko, 200
among other references. In [Moës et al., 1999], for modeling crack opening, the discontinuities are represented
enriching the finite element interpolations with a discontinuous field near the crack tip and adding an em-
bedded traction separation law applied to cohesive surfaces. Focused on the modeling of shear bands, in
[Samaniego and Belytschko, 2005] and [Areias and Belytschko, 2006], the enhancement was performed with
a fine scale strain function.

Unfitted finite elements were used in [Hansbo and Hansbo, 2002], [Hansbo and Hansbo, 2004], [Mergheim et al., 2005]
and [Mergheim et al., 2007] with additional degrees of freedom at the nodes belonging to the elements crossed
by the bands. The material degradation inside the shear bands was modeled via a strain softening law and
the cracks were opened dissipating the material fracture energy.

A sub-grid method with an inserted displacement discontinuity was used in [Yang et al., 2005] to model
the development of adiabatic shear bands in dynamic problems.

A combination of X-FEM for the macroscale and FEM for the microscale was presented in [Belytschko et al., 2007].
This multiscale aggregating discontinuities method (MAD) excludes the subdomains with internal discon-
tinuities from the coarser mesh and replaces them with an equivalent discontinuity to overcame instability
using X-FEM. In the finer scale a unit cell is used to determine the behavior of the microscale under the
loadings obtained from the larger scale. The multiple discontinuities existing in the microscale are aggregated
into only one equivalent to be injected into the larger scale. For more details on the unit cell approach see
[Feyel and Chaboche, 2000].

Regarding the modeling of the band damage evolution, the mechanisms inside the band, function of the
material microstructure, need to be modeled using a mechanical-metallurgical coupling [Gilman, 1994].

In general, the mechanical properties of the localization zone are modeled using dissipative mechanisms
[Armero, 2001]. More specifically, these dissipative mechanisms cannot be associated with material harden-
ing, since no localization can arise in this case [Backofen, 1972]. Hence, the dissipative mechanism has been
modeled using softening material laws, that although are thermodynamically unacceptable, see [Bažant, 1976]
and [Ottosen, 1986], can be adjusted to available experimental data using a few parameters.
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Other approaches that require more material experimental data but avoid the thermodynamic issue
are the damage theory, see [Cervera et al., 2004] or the ductile pressure dilatant materials as the Gurson-
Tvergaard-Needleman material model, used to model the material mechanical degradation, see [Gurson, 1975],
[Gurson, 1977], [Tvergaard, 1981], [Tvergaard, 1982], [Tvergaard and Needleman, 1981] and [Sanchez et al., 2008].

In plane problems, a shear band can be characterized by a line with normal tn, the direction tm of
the displacement jump [[tu]] and a scalar bandwidth d, as proposed in [Ottosen and Runesson, 1991] and
[Larsson et al., 1993]; in our description of the problem we adopt d = 0 for the band topology. In Fig. 2
we draw a schematic representation of the above definitions, considering that the displacement jump in the
shear band is along its tangential direction, as in the J2 elastoplastic model [D’hers and Dvorkin, 2009].

The objective of the present paper is to extend the formulation developed in [D’hers and Dvorkin, 2009]
to the modeling of J2 material models that include damage evolution. The present work is based on:

• the formulation previously developed for modelling cracks in brittle materials using embedded local-
ization lines, see [Dvorkin et al., 1990] and [Dvorkin and Assanelli, 1991], where a physical traction
separation law that exactly represents the material fracture energy defines the localization scale;

• the extension of those ideas for the modeling of J2 localization via the use of strong discontinuity modes
embedded in the element formulation, that we developed in [D’hers and Dvorkin, 2009].

Even though we are not intending to describe the micromechanical behavior inside the shear bands, we
know that the phenomena that takes place there is beyond the continuum mechanics hypothesis, since the
band dimensions are in the granular size scale. For this reason, to model the band formation, we heuristically
define a bandwidth to represent the above mentioned micro-scale evolution. The definition of this bandwidth
allows the experimental calibration of the model and provides mesh independent results also insensitive to
mesh distortions.

The paper is organized as follows: the shear bands triggering criterion is discussed in the second section,
the finite element implementation, the localization modes and the heuristic bandwidth rule are described
and discussed in the third section. In the fourth section we present the numerical implementation of our new
formulation and discuss the numerical experimentation that we developed to test it; finally the conclusions
are stated in the fifth section.

2 Shear bands triggering criterion

In the following set of equations we summarize the constitutive relation, the flow rule and the yield surface
that is used in the J2 associated plasticity model with isotropic hardening and considering infinitesimal
strains, [Dvorkin and Goldschmit, 2005]

tσij = tCEijkl (
tεkl −

tεPkl) (1a)

tεPkl = tλ t

(
∂Φ

∂σkl

)
(1b)

tΦ =
3

2
tsij

tsij −
tσ2y = 0 . (1c)

In the above equations, written in a Cartesian coordinate system, tσij are the components of the Cauchy
stress tensor at time (configuration) t, tCEijkl are the components of the fourth order elastic constitutive
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tensor, tεkl are the components of the strain tensor, tεPkl are the components of the plastic deformation
tensor, tsij are the components of the deviatoric part of the Cauchy stress tensor, tΦ = 0 is the yield
function and tσy is the yield stress.

It has been shown in [Rice, 1976] that the triggering of bifurcation in the material behavior and the
respective band orientation can be determined from the singularity of the acoustic tensor. To determine the
bifurcation conditions for J2 softening materials we state its fourth order elastoplastic constitutive tensor,
see [Simo and Hughes, 1997],

tCEP =
2νG

1− 2ν
tg tg+ 2G tI−

6G2

3G+ tH

ts ts

ts : ts
(2)

where tH is the isotropic hardening modulus, ts is the deviatoric stress tensor, v the Poisson ratio, G the
elastic tangential modulus, and

tI =
1

2

(
tgik tgjl + tgil tgjk

)
tg
i

tg
j

tg
k

tg
l

(3)

is the symmetric fourth order identity tensor. In these equations we indicate the tensorial product between
two tensors as a b (in other references it is indicated as a⊗b) and the number of underlines indicates the
tensor order.

The isotropic hardening modulus, tH, can be defined as a function of the equivalent plastic strain,

tε̄P =

√
2

3
tεPkl

tεPkl (4)

and contains the information about the material damage evolution:

tH = tH
(
tε̄P
)
. (5)

We can calculate the determinant of the acoustic tensor using a convenient Cartesian coordinate system
with base vectors tx̂i aligned with the band directions: tx̂1 in the tn−direction and tx̂2 in the tm−direction.
Using this coordinate system we build the D function which is the determinant of the acoustic constitutive
tensor, see [Rice, 1976],

D = det

(
tx̂1 ·

tCEP·
t
x̂1

)
(6)

Because the stress state is on the yield surface, tΦ = 0 in Eqn. (1c) we get,

tŝ12
2 + tŝ13

2 =
tσy

2

3
−
(
tŝ11

2 + tŝ22
2 + tŝ11

tŝ22 +
tŝ23

2
)

(7)

Evaluating Eqn. (6) and using Eqn. (7) we get,

D = Q
(
Q1
(
tŝ22

2 + tŝ11
tŝ22 +

t ŝ23
2
)
+Q2

tŝ11
2 +Q3

)
(8)

where a set of constants that do not depend on the orientation of the coordinate system tx̂i have been used,
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Q =
G3

tσy4 (3G+ tH) (1− 2ν)

Q1 = 18G(1− ν)

Q2 = 9G

Q3 = 2 tσy
2 tH (1 + ν)

If we consider D as a function only of the stresses, keeping constant all other variables, we find that it is
continuous function and that it has only one extremum where,

tŝ11 =
tŝ22 =

tŝ23 = 0 (9)

To explore this extremum we test the positive definiteness of Hessian (D) using an arbitrary vector a,

aTHessian (D) a =
Q

18G

(
(1− ν)

(
(a1 + a2)

2 + a2
2 + 2a3

2
)
+ ν a1

2
)
> 0 (10)

For the D function to vanish at any point or region it is enough that the value at the minimum is negative
or at least null. The evaluation of D under conditions stated in Eqn. (9) results in the necessary condition
for bifurcation,

D =
2 tH G3 (1 + ν)

tσy2 (3G+H) (1− 2ν)
< 0 (11)

where we find, as expected, that bifurcation is only possible in perfect plasticity or softening situations,
tH ≤ 0, regardless of the band direction and of the stress state. A discussion on physical grounds over the im-
possibility of producing shear bands in a material with plastic hardening is presented in Ref. [Backofen, 1972].
The sufficient condition for bifurcating is that there must exist a direction tn ≡ tx̂1where D < 0; hence,
to determine the bifurcation inception we must establish the conditions that the stress state independent
variables tŝ11,

tŝ22 and tŝ23 have to fulfill.
By doing a coordinates transformation and assuming tŝ23 = 0 we get,

tŝ11 = cos (β)2 ts11 − sin (2β)
ts12 + sin (β)

2 ts22 (12)
tŝ22 = sin (β)2 ts11 + sin (2β)

ts12 + cos (β)
2 ts22,

being β the angle between base vectors tx̂1 and tx1.

We use the above in Eqn. (8) considering that since Eqn. (1c) holds we can obtain a D function depending
only on two stress deviatoric components. We choose ts11 and ts22 as the independent ones and leave as
dependent ts12. Thus we get the function,

D = D
(
ts11,

t s22, β
)

(13)

We need to numerically analyze Eqn. (13), since we could not arrive to a closed form solution. For every
combination of ts11 and ts22 we determine the β angle that minimizes D, and if Dmin ≤ 0 then bifurcation
is feasible. In Fig. 3 for the material parameters E = 200GPa, 0σy = 600MPa and υ = 0.3 we plot
in the deviatoric space the zones where bifurcation is possible for a range of softening values. It can be
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seen that the bifurcation feasibility for tH = 0 coincides with maximum shear states as it was shown in
[Armero and Garikipati, 1995] and [D’hers and Dvorkin, 2009]. As softening grows the localization zones
widen while centered in the pure shear direction with its edges remaining parallel.

As it was mentioned above, the band direction when tH = 0 coincides with the maximum shear one. In
Fig. 4 for a softening tangent modulus tH = −0.1 · E we plot for every bifurcation point in the deviatoric
space, the angle between the maximum shear direction and the band direction. It can be clearly seen that
the misalignment between the band and the maximum shear direction results very small (< 1.7◦).

This result justifies our adoption of a pure shear strong discontinuity mode, as it is explained in the next
section.

3 Finite element formulation

3.1 Strong discontinuity modes

When the above defined localization indicator detects the triggering of a shear band, we split the element
kinematics into a continuum scale contribution and a localized scale deformation mode. The localized
deformation mode must be able to model a distortion along the band direction while preserving volume in
order to fulfill the J2 incompressible flow condition.

The continuum and the localized scales are related by the joint fulfillment of compatibility (only one
displacement field) and equilibrium (Eqn. (31)); but, it is the localized kinematics the one that models
the shear band development and not the complete element kinematics as in the standard finite element
formulations.

For an infinitesimal strain incremental analysis, the deformation increment is decomposed into elastic
and plastic components; while the elastic deformation only contributes to the continuum scale, the plastic
deformation contributes to the continuum and to the localized scales,

ε = εE + εP = εE
cont

+ εP
cont

+ εP
loc
. (14)

Since the equilibrium configuration at t is known, we can write the incremental relations,

t+∆tε = ε+ tε (15a)

t+∆tu = u+ tu. (15b)

With the purpose of dealing with the two aforementioned scales we split the increment of the nodal
element displacement vector,

t+∆tU−tU =U (16)

into a part that models the continuum scale and a part that models the localized sacale; for both we use the
interpolation matrix H ([Bathe, 1996]). Hence,

u = ucont + uloc = H U =H Ucont +H Uloc . (17)

The localized nodal displacements have to reproduce the band kinematics; hence, following [D’hers and Dvorkin, 2009]
we define,

uloc = H Uloc =H γ Θ (18)
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where Θ are the nodal displacements corresponding to the localized deformation mode to be defined later
in this work and γ is the increment of a scalar parameter which is part of the problem unknowns. The
incremental formulation for the parameter γ is,

t+∆tγ = γ + tγ (19)

Therefore,

u = H U = H (U− γ Θ) +H γ Θ (20)

Thus the resulting strain fields are, using Voight notation,

εcont = ε
E
cont + ε

P
cont = B (U− γ Θ) (21)

εloc = ε
P
loc = B Uloc = B γ Θ (22)

were B is the element strain-displacement matrix ([Bathe, 1996]).
The Θ mode has to have its maximum distortional deformation aligned to the band angle β and must

not introduce a volume change 1 ,

εloc4
εloc1 − εloc2

= tan
(
2β +

π

2

)
(23)

εloc1 + εloc2 + εloc3 = 0 (24)

To build Θ for 2D elements, we consider that any N − node quadrilateral element formulated in the
isoparametric natural element space (r, s) has 2N eigenmodes among which there are: one volume change
mode and two pure shear modes, as represented in Fig 5. By linearly combining those modes we can construct
a "shear base" so as to obtain a pure shear mode in any desired direction. In Table I, for a 4−Node bilinear
element, we define the deformed element nodal coordinates corresponding to the three eigenmodes in the
"shear base". For the case of higher order elements the tΦr and tΦs values for the additional nodes are
obtained by interpolation of the corner node values:

tΦ1r
tΦ1s

tΦ2r
tΦ2s

tΦ3r
tΦ3s

tΦ4r
tΦ4s

tΦI
1
2

3
2 −1

2
3
2 −1

2 −3
2

1
2 −3

2
tΦII

3
2

3
2 −1

2
1
2 −3

2 −3
2

1
2 −1

2
tΦIII

3
2

3
2 −3

2
3
2 −3

2 −3
2

3
2 −3

2

Table I. Nodal coordinates in the (r, s) natural system for the three eigenmodes
that constitute the "shear base"

Using the three sets of nodal coordinates displayed in Table I and the unstrained nodal coordinates(
rk, sk

)
we define three orthogonal nodal displacement vectors,

tΨk
A =

[(
tΦkA

)
r
− rk

]
er +

[(
tΦkA

)
s
− sk

]
es. (25)

1 The strain components in the xy plane for plane problems are:

• for plane stress cases εT =
[
ε1 ε2 ε4

]
=
[
εxx εyy 2εxy

]
,

• for plane strain and axisymmetric cases ε
T =

[
ε1 ε2 ε3 ε4

]
=,
[
εxx εyy εzz 2εxy

]
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In the above equation (er; es) are orthonormal base vectors shown in Fig. 5 along the (r, s) natural
directions; the subindex A = I...III indicates the deformation mode and the upper index k = 1...N indicates
the node.

In the (x1, x2) coordinate system we generalize Eqn. (25) using,

tΨk
A =

[
hj
((
tΦkA

)
r
,
(
tΦkA

)
s

)
x
j
i − xki

]
ei . (26)

Inside the isoparametric element the displacements corresponding to the "shear base" modes are inter-
polated as,

tΨA = hk
tΨk

A (27)

where the hk are the isoparametric interpolation functions ([Bathe, 1996]).
We compute the strain components at the element center from the three modes defined above,

εI = Bc ΨI (28a)

εII = Bc ΨII (28b)

εIII = Bc ΨIII (28c)

where Bc = B(xo1, xo2) is the strain-displacements matrix calculated at the element center. The linear
combination of the above defined strain fields results in the shear band localization strains εloc, where
βI , βII and βIII are constant parameters to be determined,

εloc = βIεI + βIIεII + βIIIεIII = Bc (βIΨI + βIIΨII + βIIIΨIII) (29)

To calculate βI , βII and βIII , we request that the strains εloc fulfill Eqns. (23) and (24) together with
the condition that if εI and εII are incompressible modes, βIII = 0 since no volume correction is required
to satisfy the incompressibility condition ; if εI and εII are not incompressible modes we adopt βIII = 1.

Using the βI , βII and βIII parameters we compose a normalized Θ mode,

Θ =
βIΨI + βIIΨII + βIIIΨIII

|βIΨI + βIIΨII + βIIIΨIII |
(30)

3.2 Equilibrium iterative scheme

For the body shown in Fig. 6, in equilibrium at time t, and considering that a shear band has already been
triggered, we seek the equilibrium configuration for time t + ∆t, via the principle of virtual work. For a
"material nonlinear only analysis" (geometrically linear analysis) ([Bathe, 1996]) we get, using the notation
in Fig. 6,

∫

V

δ [εcont]
T t+∆t

σcont dv + δuTloc
t+∆tFloc =

∫

S

δuT t+∆tp ds. (31)

For the continuum,

t+∆t
σcont =

t
σcont +

tCEP B (U− γΘ) . (32)
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Replacing Eqns. (17), (18), (21) and (32) in Eqn. (31) and since δU and δγ are arbitrary variations we
get, after some algebra,




tKu − tKu Θ

− ΘT tKu ΘT tKu Θ





U

γ


 =




t+∆tR− tF

ΘT (tF− tFloc)


 (33a)

tKu =

∫

V

BT tCEP B dv (33b)

where,

t+∆tR =

∫

S

HT t+∆tp ds

tF =

∫

V

BT t
σ dv

Following the same material evolution law already discussed in [D’hers and Dvorkin, 2009] we get,

ΘT t+∆tFloc − ΘT tFloc

ΘT tFloc
=

t+∆tσyloc −
tσyloc

tσyloc
(34)

Since the above equations correspond to the linearized step we have to iterate for solving the incremental
step; using Newton iterations we get for the n− th iteration,




t+∆tK(n−1)
u −t+∆tK(n−1)

u Θ

−ΘT t+∆tK(n−1)
u ΘT t+∆tK(n−1)

u Θ





∆U(n)

∆γ(n)


 =




t+∆tR− t+∆tF(n−1)

ΘT
(
t+∆tF(n−1) −t+∆t F

(n−1)
loc

)


 (35a)

t+∆tK(n−1)
u =

∫

V

BT t+∆tCEP (n−1) B dv (35b)

and,

U(n) = U(n−1) +∆U(n) (36a)
[
t+∆tγ

](n)
=

[
t+∆tγ

](n−1)
+ ∆γ(n) (36b)

The parameter ∆γ is condensed at the element level and the resulting stiffness matrix is symmetric.

3.3 Damage evolution

Let us consider a very simple damage model in which the evolution of the material yield stress is only function
of the equivalent plastic strain. Hence,

tσy =
tσy

(
tε̄P
)
. (37)
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A wide variety of much more involved material models that include plasticity and damage have been
proposed in the literature, e.g. the Gurson-Tvergaard-Needleman material model, see [Gurson, 1975],
[Gurson, 1977], [Tvergaard, 1981], [Tvergaard, 1982] and [Tvergaard and Needleman, 1981]; however, we
use the above simple material model as a first test of our formulation for modeling localization problems
with constitutive equations including damage evolution.

3.4 Length scale adoption

For the material inside the shear band we can specialize Eqn. (37) as,

tσyloc =
tσyloc

(
tε̄Ploc

)
. (38)

It is important to recognize that Eqn. (21) is defined at the element scale and consistently models this
scale (continuum scale); but, Eqn. (22) is defined at the element scale to model the localized deformations
inside a band of very small or zero width. When considering a material that incorporates damage evolution,
as for example the one in Eqn. (38), it is evident that the localized deformations must have a proper scale.

For the above purposes we postulate that the shear band equivalent plastic strain is proportional to the
band incremental parameter γ through a positive inter-scales factor ϕ, which relates the continuum and
localization scales, (

ε̄Ploc
)2
= ϕ2 γ2 (39)

To determine ϕ we assume that all the energy dissipated by the localized mode is dissipated in the band
volume (Vloc) during the deformation evolution,

∫ t+∆tγ

tγ

ΘT tFloc dγ =

∫ t+∆t

t

∫

Vloc

tσyloc
(
ε̄Ploc

)
d ε̄Ploc

using an Euler backward integration scheme we get,

γ ΘT t+∆tFloc =
t+∆tσyloc

(
ε̄Ploc

)
ε̄Ploc h L (40)

where h is a reference bandwidth and L is the band length along the element, as shown in Fig. 7.
Hence,

ϕ =

∣∣∣∣∣
ΘT t+∆tFloc

h L t+∆tσloc
(
ε̄Ploc

)
∣∣∣∣∣ (41)

It must be noted that the parameter ϕ has to be recalculated at every iteration to ensure that Eqn. (40)
is satisfied during the iterative scheme.

In our previous paper [D’hers and Dvorkin, 2009] we did not introduce a band scale and therefore when
using it for material models including damage we do not have any available parameter to accommodate for
different experimentally determined damage evolutions (Eqn. (38)); in the present paper we introduce the
reference bandwidth - h - which can be used to phenomenologically model the observed material behavior.
In Section 4 we will observe that for a material with the same damage evolution characterization (Eqn. (38))
by using different values of - h - we can reproduce different load-displacement paths.
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3.5 Variables evolution

To model the evolution of the localization bands we need to keep track of the localization scale variables and
of the continuous scale variables. For this purpose, we track, at the element center, the localization scale
variables and, at the Gauss points, the continuous scale variables (Fig. 8).

Our algorithm for tracking the localization scale variables evolution at the element center can be sum-
marized as follows:

1. Using the value of U obtained from equilibrium iteration, we calculate the strain increment εc at the
element center.

2. Starting from the converged values at time t and using the strain increment εc via the radial return
algorithm ([Simo and Hughes, 1997]) we calculate at time t+∆t,

εc ,
t
εc ,

t
ε
P
c ,
t σyc ,

tε̄Pc︸ ︷︷ ︸
Input

−→ Radial return −→

t+∆t
σc,

t+∆t σyc , ε̄
P
c︸ ︷︷ ︸

Output
(42)

3. If there is an increment in ε̄Pc we are in the plastic loading regime; hence, the localization must be
checked. Otherwise, the band remains closed and the continuum scale calculation is carried out with
γ = 0.

For triggering the localization and for determining the band direction we use the converged values
t
σc and tε̄Pc and the test condition stated in Eqn. (13) if instantaneously tH < 0.

For a developing band,

ϕ (i) =

∣∣∣∣∣
ΘT t+∆tF

(i−1)
loc

h L t+∆tσ
(i−1)
loc

∣∣∣∣∣ and
(
ε̄Ploc

)(i)
= ϕ(i) γ(i−1),

and,
t+∆tσ(i)yloc =

t+∆tσyloc

(
tε̄Ploc +

(
ε̄Ploc

)(i))
.

Our algorithm for tracking the continuum scale variables evolution at the Gauss points can be summarized
as follows:

1. At the Gauss points,
εcont = B (U− γ Θ) (43)

2. Starting from the converged values at time t and using the strain increment εcontvia the radial return
algorithm we calculate at time t+∆t,

ε ,t ε ,t εP ,t σy,
tε̄P︸ ︷︷ ︸

Input
−→ Radial return −→

t+∆t
σ, ε̄P , εP .︸ ︷︷ ︸
Output

(44)
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4 Numerical implementation and some verification problems

The process of triggering in a finite element model the localization mechanism is not a smooth process and
therefore it requires the adoption of some ad hoc smoothing techniques:

• Regarding the activation and deactivation of the band mechanism, every element is allowed to trigger-
close it up to a number of times during a step (e.g. 4 to 8 times); if it exceeds this number, the opening
of the band mechanism is precluded for the step.

• The global tangent stiffness matrix that results from the use of softening materials, may have negative
eigenvalues when the band is established. Hence, in Eqn. (33a) the stiffness along the band direction

(ΘT t+∆tK(n−1)
u Θ), may be too small and even negative; impairing therefore the algorithm conver-

gence. In our numerical experimentation we stabilized the numerical convergence by closing the band
during the iteration of the elements in which,

ΘT t+∆tK(n−1)
u Θ < kthreshold

with kthreshold ranging from 1
40 to 1

10 of
(
ΘT t+∆tK(0)

u Θ
)
. This stabilization procedure did not show

to influence the analysis results.

4.1 Simple traction of a rectangular sheet under plane strain conditions

We depict the plane strain problem under consideration in Fig. 9 with L = 8mm. The sheet, with two
symmetry planes, has a square notch to induce the localization. We imposed the displacements on the upper
boundary and we continued the analysis up to an elongation of 4% or, we stopped it earlier, if tσy decreased
below 10% of the initial 0σy.

We analyzed four different mesh densities,

Mesh Horizontal Elem. Vertical Elem. Total Elem.
1 8 12 95
2 16 24 380
3 32 48 1520
4 64 96 6080

Table II. Regular meshes used to analyze the simple traction of a rectangular sheet

We analyzed the behavior of the QMITC element ([Dvorkin and Vassolo, 1989] - [Dvorkin et al., 1996])
and the Q2-P1 element [Bathe, 1996]; in both cases with the localization mechanism included in their
formulation.

To show the mesh dependency of the solutions provided by elements with no ad hoc localization mecha-
nism included in their formulation we used the standard QMITC element.

We considered the material parameters: E = 200GPa, 0σy = 600MPa, υ = 0.3 and a softening tangent
modulus of ET = −1GPa. We adopted the damage law,

tσy =
oσy +ET

tε̄P . (45)
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4.1.1 Standard elements: mesh dependent solutions

The load displacement paths obtained using the standard QMITC element (without localization mechanism)
are presented in Fig. 10, showing, as expected, mesh dependent results. The resulting equivalent plastic
strain, tε̄P , is plotted in Fig. 11 where it can be observed that tε̄P grows unbounded with mesh refinement
overestimating therefore the material degradation, as discussed in [D’hers and Dvorkin, 2009]. To introduce
an objective comparison criteria we plot, in Fig. 12, the energy dissipation predicted by this model. It can
be seen that the dissipated energy slope grows unbounded with mesh refinement.

4.1.2 Our new formulation: mesh independent solutions

To elaborate on the behavior of the adopted lengthscale heuristic rule, we first compare the results obtained
without a lengthscale as in [D’hers and Dvorkin, 2009] and those obtained when using a lengthscale related
directly to the element area,

h L = Aelement

We plot the load-displacement paths and the total energy dissipation predicted by the both models using
different meshes in Figs. 13 and 14 respectively. Both models provide the same mesh independent results.

To show the ability of the formulation to represent different damage behaviors, we adopt h = 0.1mm

and h = 0.05mm as bandwidth parameters and plot the resulting load-displacement curves in Figs. 15 and
Fig. 16. In Fig 16. the different behavior observed between the meshes of 95 and 380 elements and the
finer meshes of 1520 and 6080 elements is due to the fact that in the finner meshes two parallel bands open
instead on a sigle one. This effect also happens in Fig 15. but it is less noticeable in the load displacement
plot.

For each h−value the results are almost mesh independent and the unloading slope is controlled by the
lengthscale. Hence, an experimental technique for determining the lengthscale for different materials and
microstructures is available.

To complete the analysis, we plot in Fig. 17 the load-displacement curves corresponding to the regular
and distorted meshes shown in Fig. 18; and in this figure we plot on the deformed configurations the
corresponding equivalent plastic strains.

It is important to recognize that the lengthscale adoption implies that the energy is dissipated in an
equivalent area,

h L = Alocalization

defined by the h−parameter and, most important, that the parameter is not mesh dependent, that is to say,
the parameter does need to be modified when using different element sizes.

Once the h−parameter has been set, the dissipated energy in the band is not unbounded and it converges
with mesh refinement as it is shown in Fig. 19 for the case of QMITC elements including the localization
mechanism in its kinematics.

4.1.3 Higher order elements

To show the behavior of our formulation when implemented with different elements, we plot in Fig. 20
the load displacement results obtained with the Q2-P1 element and in Fig. 21, we plot on the deformed
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configuration the corresponding equivalent plastic strains. It can be seen that the obtained results are
congruent for the different meshes.

5 CONCLUSIONS

This work follows our previous paper, [D’hers and Dvorkin, 2009], where we introduced the use of strong
discontinuity modes to model shear bands localization.

In the present paper we introduce a lengthscale parameter (h−parameter) for heuristically modeling
the material damage evolution inside the band. This h−parameter controls the damage-induced unloading
behavior and therefore it can be determined, for different materials and microstructures, from actual ex-
perimental data. Hence, the defined lengthscale parameter is only dependent on the material behavior and
therefore mesh independent.

The resulting formulation does not require a specific mesh refinement to model a localization, provides
mesh independent results, allows the control of the downslope part of the load-displacement path via the
h−parameter and the results are insensitive to element distortions.

Regarding the strong discontinuity modes that were initially developed for 4-node elements, we have ex-
tended them to higher order elements that are commonly used in the literature for modelling elastoplasticity.

This two-scale formulation does not introduce extra d.o.f. in the assembled numerical model and all the
specific calculations are performed at element level.

Acknowledgement 1 We gratefully acknowledge the support of TENARIS and ITBA for this research.
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Figure Captions:

1. Subdomains schematic representation

2. Band description

3. Bifurcation zones for various tH

4. Misalignment between maximum shear and bifurcation direction for tH = −0.1E

5. Shear and volume change modes for a 9 node element

6. Continuum with an active localization

7. Scheme of a band in a localized element

8. Information storage scheme

9. Central notched specimen

10. Load-displacement without localization modes - QMITC

11. Equivalent plastic strain in the continuum without localization modes - QMITC

12. Energy dissipated in the band without localization modes - QMITC

13. Load-displacement with and without lengthscale - QMITC

14. Total energy dissipated in the band with and without lengthscale - QMITC

15. Load-displacement with h=0.10 - QMITC

16. Load-displacement with h=0.05 - QMITC

17. Load-displacement with h=0.10 for regular and distorted meshes - QMITC

18. Band equivalent plastic strain with h=0.10 for regular and distorted meshes - QMITC

19. Energy dissipated in the band with h=0.10 — QMITC

20. Load-displacement with h=0.10 for regular and distorted meshes — Q2P1

21. Band equivalent plastic strain with h=0.10 for regular and distorted meshes — Q2P1
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Fig. 1. Subdomains schematic representation

Fig. 2. Band description
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Fig. 3. Bifurcation zones for various tH

Fig. 4. Misalignment between maximum shear and bifurcation direction for tH = −0.1E
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Fig. 5. Shear and volume change modes for a 9 node element

Fig. 6. Continuum with an active localization
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Fig. 7. Scheme of a band in a localized element

Fig. 8. Information storage scheme
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Fig. 9. Central notched specimen
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Fig. 10. Load-displacement without localization modes - QMITC

Fig. 11. Equivalent plastic strain in the continuum without localization modes - QMITC
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Fig. 12. Energy dissipated in the band without localization modes - QMITC

Fig. 13. Load-displacement with and without lengthscale - QMITC
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Fig. 14. Total energy dissipated in the band with and without lengthscale - QMITC

Fig. 15. Load-displacement with h=0.10 - QMITC
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Fig. 16. Load-displacement with h=0.05 - QMITC

Fig. 17. Load-displacement with h=0.10 for regular and distorted meshes - QMITC
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Fig. 18. Band equivalent plastic strain with h=0.10 for regular and distorted meshes - QMITC

Fig. 19. Energy dissipated in the band with h=0.10 — QMITC
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Fig. 20. Load-displacement with h=0.10 for regular and distorted meshes — Q2P1

Fig. 21. Band equivalent plastic strain with h=0.10 for regular and distorted meshes — Q2P1
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