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Abstract

In this paper we discuss our Þnite element procedure for simulating the
hot rolling of ßat steel products. We couple an Eulerian rigid-viscoplastic
model of the steel plates deformation to a Lagrangian elastic model of the
rolls deformation. This latter model incorporates the bending deformation
of the work rolls supported by the back-up rolls and the ßattening of the
contact areas (Hertz problem) via an enhanced beam model.

The Þnite element model is validated comparing its predictions with
actual industrial measurements and then it is used to analyze different
rolling set-ups.

Key Words: metal forming; hot strip rolling; Þnite elements; thermal
crown; roll bending; roll ßattening

1 Introduction
In previous publications [1] to [6] we presented an Eulerian formulation for
modeling metal forming processes which is based on the ßow formulation (rigid
- viscoplastic material models) [7] implemented via Thompson�s pseudo - con-
centrations technique [8][9]. When developing a 3D Þnite element model,
for simulating the hot rolling of steel plates, it is necessary to include in this
model the rolls deformation, because it plays a central role in determining the
resulting proÞle and ßatness1 of the rolled plates [10]. It can be safely assumed
that the rolls (work and back-up rolls as per Fig. 1) deform within the elastic
range; hence, it is necessary to couple the Eulerian rigid - viscoplastic model of
the rolled steel plates deformation to an elastic Lagrangian model of the rolls
deformation.

1The concepts of plate proÞle and ßatness are going to be discussed in Appendix A
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In the second section of this paper we summarize the relevant aspects of our
Eulerian rigid - viscoplastic formulation and of its coupling to the elastic La-
grangian model that describes the rolls deformation under the loading indicated
in Fig. 2 (F1and F2 are forces introduced by an hydraulic rolls bending system;
this device is used to control the plates proÞle and ßatness [10]).

When modeling the rolls deformation we assume a linear elastic material
behavior; however, we consider several geometrical nonlinearities : contact be-
tween the work and back-up rolls and ßattening of the contact areas (Hertz
problem). The simulation of these phenomena is achieved using an enhanced
beam model rather than a more expensive 3D model of the rolls.

In the third section of this paper we present a detailed description of the
nonlinear enhanced beam model that we developed for simulating the rolls de-
formation.

With the coupled formulation implemented in our Þnite element code MET-
FOR we develop, in the fourth section of this paper, several industrial applica-
tions.

2 The coupled Eulerian - Lagrangian formula-
tion

In this section we brießy describe the basis of our simulation procedure:

� The Eulerian formulation that models the rolled plates deformation using
the ßow formulation implemented via Thompson�s pseudo - concentrations
technique.

� The coupling of that Eulerian formulation to the Lagrangian formulation
that models the rolls deformation (to be developed in the next section)

2.1 The Eulerian formulation

We use a Þxed mesh with the material moving inside the mesh; at each point
interior to the mesh we deÞne a variable named pseudo - concentration (c):

c > 0⇐⇒ there is material at the point,
c < 0⇐⇒ there is no material at the point.

Being ( úu) the velocity Þeld inside the mesh, the c−distribution fulÞls the
following equations:
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úu ·∇c = 0 (stationary problems) (1a)
∂c

∂t
+ úu ·∇c = 0 (transient problems) (1b)

For modeling the rolled steel behavior we use a rigid - viscoplastic consti-
tutive relation [11]; the material ßow is described via a viscoplastic associated
von Mises model. Hence, the material ßow is incompressible.

We impose the incompressibility constraint via an augmented Lagrangian
procedure [12] to [17]. Equilibrium is reached via an iterative procedure because:

� The material constitutive relation is nonlinear.
� The augmented Lagrangian technique iteratively builds the pressure Þeld.

We use a modiÞed Uzawa�s algorithm [14] and in the same iterative loop
we solve the nonlinearities coming from the constitutive model and make the
augmentation procedure.
The equations for the k-th equilibrium iteration, obtained using the Principle

of Virtual Work and the augmented Lagrangian technique are [2]:

Z
V

2 µ(k−1) ∆ úε0ij δ∆ úε
0
ijdv +

Z
V

κ ∆ úεv δ∆ úεv dv =Z
V

fvi δ∆ úui dv +

Z
Sσ

ti δ∆ úui dv − (2)Z
V

s
(k−1)
ij δ∆ úε0ijdv −

Z
V

(p(k−1) + κ úε(k−1)v ) δ∆ úεv dv

and,

úu
(k)
i = úu

(k−1)
i + ∆ úu

(k)
i (3a)

úε
0(k)
ij = úε

0(k−1)
ij + ∆ úε

0(k)
ij (3b)

úε(k)v = úε(k−1)v + ∆ úε(k)v (3c)

p(k) = p(k−1) + κ úε(k)v (3d)

In the above equations,

sij: deviatoric stress components,
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p : hydrostatic stress component,

úε0ij : deviatoric strain rate components (viscoplastic strain rate tensor),

úεv : volumetric strain rate component (it is constrained to be zero),

κ : penalty parameter; the advantage of the augmented Lagrangian procedure
over a standard penalty procedure is the possibility of using smaller values
for this parameter and therefore the possibility of working with better
conditioned matrices. In our Ref. [2] we presented several numerical
examples in which we showed the better performance of the augmented
Lagrangian procedure as compared with the standard penalty procedure,

µ : viscosity, derived using the constitutive viscoplastic relation [7]. For the
special case of a rigid - plastic material we get,

µ =
σy(ε)

3
�
ε

(4)

�
ε : material derivative of the equivalent plastic strain.

�
ε =

µ
2

3
úεij úεij

¶ 1
2

(5)

�
ε =

D ε

D t
=
∂ε

∂t
+ úu ·∇ε (6)

fvi : external forces acting on the body, per unit volume of the spatial conÞgu-
ration,

ti : external surface forces acting on the body,

V : volume of the body spatial conÞguration (c > 0). However, in order to be
able to integrate over the complete mesh, at those points where c < 0 we
use µ = 10−3µactual material,

Sσ : external surface where loads are prescribed.

In Eqn.(3d) we iteratively build the pressure Þeld using the augmented La-
grangian technique.

For discretizing the equilibrium equations (2) we use Þnite elements based
on the method of mixed interpolation of tensorial components. For 2D problems
we use the QMITC-3F quadrilateral element, which was described in our Ref.
[2] and for 3D problems we use the (H1-P0)-3F element described in our Ref.
[6]. Both element formulations fulÞl the following requirements:
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� They satisfy Irons� Patch Test.
� They do not contain spurious zero energy modes.
� They do not lock due to the incompressibility constraint.

For discretizing the transport equations (1a or 1b) we use standard isopara-
metric elements: quadrilateral (Q1) elements for the 2D problems and hexahe-
dral (H1) elements for the 3D problems. In all cases, for solving the advective
transport equations we use the SUPG technique [17] [18].

The equivalent plastic strains are obtained integrating the following equa-
tions,

úu · ∇ε =
hci
|c|

�
ε (stationary problems) (7a)

∂ε

∂t
+ úu · ∇ε =

hci
|c|

�
ε (transient problems) (7b)

Some notes regarding our Eulerian formulation:

� The material moves inside a Þxed mesh.
� It provides the free surfaces in stationary and transient problems without
any special free surface algorithm.

� It does not require a remeshing algorithm, usually needed when using
Lagrangian or Eulerian - Lagrangian formulations.

The contact problem between the blank and the tools (plate and work rolls)
is modelled using c−dependent boundary conditions [1]; for úun, the velocity
component normal to a tool surface, we use:

c < 0 =⇒ úun = free (8a)

c > 0 =⇒ úun = 0 (8b)

For modeling the friction between the rolls and the steel plates we use either
a constant friction law or a Coulomb friction law [19]. It is important to notice
that the location of the non-slip points is an analysis result [5].
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2.2 Staggered iterative solution

The coupling between the Eulerian model that we described in the previous
subsection and the Lagrangian rolls deformation model that we are going to
describe in the following section is performed via an iterative staggered scheme
that is composed by:

� An OUTER LOOP that incorporates the rolls deformation model.
� An INNER LOOP or equilibrium loop.

We describe the staggered iterative scheme in what follows:

OUTER LOOP

1. k = 0

2. Assume for the rolls a trial deformation −→ (U
(k)
rolls)

3. k = k + 1

4. Keep Þxed (U (k−1)rolls ) and solve the equilibrium equations (ei-
ther stationary ßow or transient ßow, in the latter case solve
for the step t −→ t+∆t) GO TO THE INNER LOOP

5. From the above loop get the loads imposed by the rolled plates
on the rolls (R(k))

6. Solve the enhanced beam model under the loads
R(k) and the bending forces −→ (U

(k)
rolls)

7. IF

°°°U(k)
rolls − U

(k−1)
rolls

°°°
2°°°U(k)

rolls

°°°
2

6 UTOL

THEN −→ CONV ERGENCE

ELSE −→ GO TO 3
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INNER LOOP (EQUILIBRIUM LOOP)

� For stationary problems start from a trial c−distribution and
zero velocities úu(0) = 0.

� For transient problems, t −→ t+∆t, start from the converged
solution at time t.

� Keep constant the rolls deformations (point 4 in the outer
loop).

1. l = 0

2. l = l + 1

2.a. r = 0 ; úu(r) = úu(l−1)

2.b. r = r + 1

Solve Eqns. (2 and 3a to 3d) keeping constant the
c−distribution and the ε−distribution.

2.c. IF
k úu(r)− úu(r−1)k

2k úu(r)k
2

6 úUTOL . AND . k úεvk∞ 6 úV TOL

THEN −→ úu(l) = úu(r) GO TO 3

ELSE GO TO 2.b

3. Calculate the c−distribution and the ε−distribution using
Eqns. (1a or 1b and 7a or 7b)

4. IF l = 1

THEN GO TO 2

ELSE

IF
k úu(l)− úu(l−1)k

2k úu(l)k
2

6 úUTOL

THEN −→ CONV ERGENCE

ELSE −→ GO TO 2
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3 Simulation of the rolls deformation. The en-
hanced beam model

In this section we present the enhanced beam model that we developed to sim-
ulate the rolls elastic deformation.

3.1 Contact between work and back-up rolls. The Hertz
elements

We discretize the work roll and its corresponding back-up roll using Hermitian
beam elements that include the shear deformation [20]. In the area where con-
tact between both rolls is possible we deÞne pairs of matching nodes (one on
each beam model) and between them we implement a �node-to-node� contact
algorithm (usually the rolls are parallel and the matching nodes are located at
the intersections between the beam axes and a common normal). We interpose
between the matching nodes an ad hoc element that models the ßattening of
both surfaces in contact: our new Hertz element.

For the i-th Hertz element connecting the matching nodesNw
i (corresponding

to the work roll) and Nb
i (corresponding to the back-up roll), using the nomen-

clature in Fig. 3, we deÞne the initial gap,

δ0i =
¯̄̄
rNw

i
− rNb

i

¯̄̄
− (Rwi +R

b
i ) (9)

please notice that due to the rolls mechanical and thermal crown the radius (Rwi
and Rbi ) are variable node to node.
Loading the beam system (work + back-up rolls) with the forces determined

in the Eulerian model plus the bending forces, we get the nodal displacements
UNw

i
and UNb

i
; hence , the gap undergoes a change, from δ0i to (δ

0
i +∆Uδi),

∆Uδi = (UNb
i
− UNw

i
) · ri = ubi − uwi (10)

where,

ri =
rNb

i
− rNw

i¯̄̄
rNb

i
− rNw

i

¯̄̄ .
The gap is also affected by the Poisson effect in the bent beams [21],

∆νδi = (UυNb
i
− UνNw

i
) · ri = uνbi − uνwi (11a)

¯̄̄
UυNk

i

¯̄̄
=

νk
¯̄̄
Mk

i

¯̄̄
(Rki )

2

2 Ek Iki
(11b)
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the second equation was obtained from Ref. [22] and both displacements act
in the direction of the bending displacements but with opposite sense. In the
above equation,

Ek, νk : Yong�s modulus and Poisson ratio for the work roll (k = w) or for
the back-up roll (k = b),

Mk
i , I

k
i : bending moment and inertia moment for the work roll/back-up roll
section related to the i-th Hertz element.

Therefore, the rolls bending makes the initial gap evolve from δ0i to the value,

δ1i = δ
0
i +∆Uδi +∆νδi (12)

When δ1i > 0 the nodes Nw
i and Nb

i are not in contact and when δ
1
i < 0

both nodes are in contact and there is a contact force (Pi) among them. Being
D the axial distance between equally spaced nodes on the roll axes and bi the
width of the contact zone for the Nw

i -N
b
i Hertz element, we can write [23]

bi =

r
2 Pi KRi CE

π D
(13a)

KRi =
2 Rwi R

b
i

Rwi +Rbi
(13b)

CE =
1− νw
Ew

+
1− νb
Eb

(13c)

We approximate the radial displacement of each roll surface (ßattening) with
the superposition of the elastic solutions of a semi-inÞnite solid (z > 0) loaded
with distributed loads, pn, acting on the area Sn = Dbn in the plane z = 0.
Using a Cartesian coordinate system centered in the area Sn the solution of the
Boussinesq problem is [24],

wki (xi, yi, zi) =
NHertzX
n=1

(1+ νk)

2 Ek π

Z Z
Sn

pn(x0, y0)
·
2 (1− νk)

r
+
z2i
r3

¸
dx0dy0

(14a)

r =
q
(xi − x0)2 + (yi − y0)2 + z2i (14b)

pn =
Pn
Sn

(14c)

where NHertz is the number of Hertz elements.
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With a close form solution we can calculate the integral on the r.h.s. of Eqn.
(14a). The contribution of each roll (k = w or k = b) to the ßattening of the
i-th Hertz element is,

aki = w
k
i (0, 0, 0)−wki (0, 0, R) . (15)

The ßattening of the i-th Hertz element is the addition of all the contributions
we evaluated above; hence, the gap evolves from its original value to a Þnal value,

δi = δ
0
i +∆Uδi +∆νδi + ai1 + ai2 = δ

1
i + ai1 + ai2 (16a)

the contact condition imposes,

δi = 0 (16b)

For solving the nonlinear beam system we implemented the following algo-
rithm:

1. m = 0

2. Load the work roll with the forces calculated in the rigid-viscoplastic model,
with the bending forces and with a back-up roll reaction assumed uniform
for the Þrst trial (P (0)i i = 1, NHertz are the equivalent contact forces)

3. Load the back-up roll with the assumed uniform reaction (P (0)i i =
1,NHertz)

4. Calculate the gap of the Hertz elements ( i = 1, NHertz) using in Eqn.
(16a) the nodal loads P (m)

5. IF for all the Hertz elements δ1i > 0 ( i = 1, NHertz) THEN GO TO 7

6. Correct the contact force distribution at the M nodes where δ1i < 0 impos-
ing Eqn. (16b)

6.a.

K ∆P (m) = − δ (M ×M system)

where,

δT = [δ1 δ2 · · · δM ]

Kpq =
∂δp
∂Pq

=
∂∆Uδp
∂Pq

+
∂∆νδp
∂Pq

+
∂ap1
∂Pq

+
∂ap2
∂Pq
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6.b. m = m+ 1

6.c. P (m) =P (m−1) +∆P (m)

6.d. IF P (m)i < 0 THEN P
(m)
i = 0 i = 1,M

6.e. IF
kP (m)−P(m−1)k

2

kP (m)k
2

6 PTOL THEN GO TO 7

ELSE GO TO 4

7. CONVERGENCE

3.2 Contact between work rolls and the rolled plates

In order to determine the total rolls deformation it is necessary to add, to the
deformation calculated as detailed above, the ßattening of the work rolls due to
their contact with the rolled steel plates. For this purpose we use Eqn. (14a)
integrated over the contact surface between the work roll and the rolled steel
plate.

4 Industrial applications of the model

In this section we present several simulations developed, for the hot rolling
mill in Fig. 1, using our modeling procedure. Our objectives are to qualify,
for roughing and Þnishing stands, the developed Þnite element technique and
to demonstrate its potential for predicting, in actual engineering applications,
the plate proÞles that can be expected when using in the rolling mill different
set-up alternatives. The analyses that we describe in what follows need to
render very accurate results because, in the modern industrial practice, the
boundary between acceptable plate proÞles and non-acceptable ones is deÞned
by proÞle differences from two to three orders of magnitude smaller than the
plates thickness.

As it is well known, the solution of the transport equation (1a) or (1b), that
deÞnes the plates proÞle, usually does not provide the needed accuracy due
to numerical diffusions that can be minimized, using the available numerical
techniques[17][18], but not completely eliminated, specially in the case of non
regular meshes. However, in our numerical experimentation we found that this
lack of accuracy in determining the position of the surfaces c = 0, that deÞne
the plates geometry, does not have an important inßuence when calculating
the separating forces; hence, the most accurate procedure for determining the
rolled plates proÞle is by considering the model predictions for the work rolls
deformation.
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4.1 Validation of the model for a roughing stand (R4)

In our previous references [3],[4] and [6]we publised the result of a set of in-
dustrial tests that were developed for validating our Þnite element model when
applied to a roughing stand. The industrial tests were carried out on the rough-
ing stand R4 and the obtained results are reproduced in Fig. 4. The larger
difference between the Þnite element predicted plate proÞle at the stand exit
and the measured plate proÞle at that point is located at approx. ±450 mm
from the stand center. This is because in our analysis, we did not incorporate
into the model geometry the rolls wear, which can be characterized with the
typical R4 roll wear proÞle shown in Fig.5.

The obtained results are quite satisfactory and therefore we can consider
that METFOR is a valid tool for modeling a roughing stand.

4.2 Parametric analyses on a roughing stand (R4)

The purpose of these analyses is to investigate the effects, on the plate proÞle
produced at this roughing stand, of:

� The plate proÞle at the stand entrance (that is to say the plate proÞle
produced by the upstream stand R3)

� The total crown of the work rolls2.
For our analyses we considered the following stand data:

Back-up rolls Work rolls
Material steel casted iron
E [Gpa] 205.8 172.5

Central diameter [mm] 1185.86 622.94
Total crown [mm] 0.00 see Table III

Peripherical speed [m/s] 2.136

Table I. Rolls data

Temperaure [◦C]3 1100
Yield stress [MPa]4 117.6

Width [mm] 1000
Upstream plate crown [mm] see Table III

Upstream plate thickness [mm] 54
Downstream plate thickness [mm] 30

Table II. Plate data
2The concept of roll crown is going to be discussed in Appendix A.
3Assumed constant through the plate thickness and through the plate width. This approx-

imation is going to be improved with a coupled thermo - mechanical model.
4Assumed constant and calculated using the above deÞned temperature [26]. This approx-

imation is going to be improved with a coupled thermo - mechanical - metallurgical model.
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In our parametric analysis we considered the following cases:

Case Total crown of the work rolls [mm] Upstream plate crown [mm]
1 + 0.1 0.0
2 + 0.1 + 0.4
3 + 0.1 - 0.4
4 - 0.1 0.0
5 - 0.1 + 0.4
6 - 0.1 - 0.4

Table III. Parametric analysis

In all cases we considered a constant friction law with m = 0.7.

In Fig. 6 we present for the six analyzed cases the �plate - work rolls�
separating force distribution.

From the results plotted above we conclude that:

� The separating force distribution is not dependent on the plate proÞle
upstream the stand R4.

� Since the roll deformation (bending and ßattening) is determined by the
separating forces, and the plate proÞle downstream the stand R4 is de-
termined by the roll deformation, we can conclude that for this stand the
produced plate proÞle is not dependent on the incoming plate proÞle.

4.3 Validation of the model for a Þnishing stand (F10)

In this subsection we present the qualiÞcation of our Þnite element model for
the analysis of a Þnishing stand, comparing its predictions with actual industrial
measurements performed on the rolling mill.

It is very important to include in the analysis an accurate description of
the rolls thermal crown 5; hence, to analyze the rolls thermal evolution and the
corresponding thermal crown evolution we developed the Þnite element system
TCROWN, described elsewhere [25], composed of two modules:

� ROLLTEM: predicts the work rolls thermal evolution. It is a 2D axisym-
metric Þnite element model. Even tough the axisymmetric model cannot
predict the temperature peaks on the roll surface, these peaks have a very
low thickness penetration [10] and can be neglected for determining the
rolls thermal expansion.

5The concepts of thermal and mechanical rolls crown are going to be discussed in Appendix
A.
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� ROLLEXP: calculates, using a thermo - elastic model, the work rolls ther-
mal crown evolution.

Using TCROWN, and measurements of the rolls surface temperature per-
formed after the rolling schedule described in Fig. 7, we characterized the work
rolls thermal evolution as shown in the same Þgure.

In Fig. 8 we describe the temperature distribution corresponding to the
instants at which the last rolled coil exits the F10 stand. In Fig. 9 we plot the
roll proÞle developed by the temperature distribution described in the previous
Þgure and the initial cold roll proÞle, from them the thermal radial expansion
and the resulting thermal crown can be obtained.

To perform our Þnite element analysis we used the following data:

1. Upstream plate proÞle with a relative crown (crown/thickness)6equal to
the relative crown measured on the downstream plate proÞle.

2. Plate constant yield stress (200.9MPa) calculated matching the measured
total separating force (8124.2 kN) with the numerically predicted total
separating force.

3. Bending force F1 = 156.8 kN ; F2 = 0 (see Fig. 2).

In Fig. 10 we compare the numerical plate proÞle predicted by METFOR,
using the above data, with the distribution of on-line measurements performed
on the same plate by the thickness measuring equipment of the rolling mill.

If instead of calculating the yield stress as described above, we use the ex-
pressions in [26] with a stand temperature of 920 ◦C we obtain a total separating
force 25% higher than the actual one; even tough this discrepancy is of the or-
der of the discrepancies reported in [27] to [29] for models that do not include
the thermo - mechanical - metallurgical coupling, it is too high for the pur-
pose of predicting the plate proÞle. Of course, when we implement a coupled
thermo - mechanical - metallurgical model we will not need to go through the
measurement and matching of the separating forces.

The obtained results are quite satisfactory and therefore we can consider
that METFOR is also a valid tool for modeling a Þnishing stand.

6The inßuence of the relative crown on the plate ßatness is going to be discussed in Ap-
pendix A.
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4.4 Parametric analyses on a Þnishing stand (F10)

In this subsection we analyze the plate proÞle produced in the last Þnishing
stand when two different strategies are used for cooling the work rolls; in Fig.
11 we represent, for each of the two water cooling conÞgurations that we are
going to consider, its heat transfer capacity distribution.

Using the Þnite element system TCROWN we evaluate the work roll tem-
perature distributions (Fig. 12) and the work roll proÞles (Fig. 13) after rolling
14 plates. Using the data in Fig. 13 we analyze the stand with METFOR and
obtain the results in Fig. 14.

It is evident that, in the case of a Þnishing stand, the rolls cooling system
has a strong control on the produced plate proÞles and therefore on the plate
ßatness [10].

5 Conclusions

We presented a Þnite element formulation for modeling the hot rolling of steel
plates; the formulation couples an Eulerian description of the rolled plates de-
formation and a Lagrangian description of the rolls deformation.

The Eulerian description of the rolled plates deformation is developed using
the classical ßow formulation (rigid - viscoplastic material model) implemented
via Thompson�s pseudo - concentrations technique.

The Lagrangian description of the rolls deformation is developed using a
new enhanced beam element; the Hertz element incorporates the bending de-
formation of the work rolls supported by the back-up rolls and the ßattening of
the contact areas. It is a nonlinear elastic element and it is much more efficient
than the use of 3D elements.

A future enhancement of the accuracy of our model predictive capability will
be achieved by developing a coupled thermo - mechanical - metallurgical model
[27] to [30].
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A Rolling terminology

In this appendix we are going to brießy comment some concepts pertaining to
rolling technology, that have been used in the main body of this paper.

A.1 Plate proÞle and plate crown

The transversal section of a rolled steel plate is usually not a rectangle but it
has a shape similar to the one schematized in Fig. A.1, this shape is referred
to as the plate proÞle. In order to have a quantitative measure of the difference
between the plate thickness at the center of its transversal section and near its
edges the plate crown is deÞned; in the same Þgure we indicate this deÞnition.

A.2 Plate ßatness

Since the transversal section of a plate is of variable thickness, it is apparent
that during rolling different Þbers located at different locations across the plate
will undergo different elongations; hence, due to the plate continuity, some Þbers
will be in a tensile state and others in a compressive state. It is well known that
the compressed parts may buckle and therefore the plate may loose its ßatness.

To quantify the tendency towards buckling at a given stand the following
technological parameter is used [10]:

δ =
plate crown upstream the stand
plate thickness upstream the stand

− plate crown downstream the stand
plate thickness downstream the stand

The parameter δ is the difference between the plate relative crowns upstream
and downstream the stand. If we neglect the lateral spreading of the plate (a
valid assumption for the last Þnishing stands) then,

� δ < 0 indicates a tendency towards buckling at the plate edges,
� δ > 0 indicates a tendency towards buckling at the plate center.
Therefore, the objective of a stand set-up is a rolling condition with δ = 0

in order to produce a ßat plate. However, it has been experimentally deÞned a
range inside which it can be assured the ßatness of the plate [10]:

−80
·
downstream thickness

plate width

¸1.86
< δ < 40

·
downstream thickness

plate width

¸1.86
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A.3 Rolls proÞle and crown

The work rolls and sometimes also the back-up rolls are not straight cylinders,
usually the cylinder generatrices have a shape similar to the ones indicated in
Fig. A.2 (roll proÞles), to compensate the bending of the rolls and therefore
produce a plate with a smaller crown. The number used to deÞne a roll proÞle
is the roll crown whose deÞnition is also indicated in the same Þgure.
As it was discussed in the fourth section the thermal evolution of the work

rolls during rolling imposes an evolution of their shape, hence the original or
mechanical crown of the rolls is modiÞed by a thermal crown; therefore,

total crown = mechanical crown + thermal crown
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(a) Diagram of a hot rolling mill for steel plates 
 
 
 
 

Back-up roll

Work roll

Rolling direction

 
 
 

(b) Diagam of a 4-rolls stand (R2 to F10 in the above diagram) 
 
 

Figure 1. Typical hot rolling mill for steel plates. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Forces acting on a work/back-up rolls set. 
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(a) Upstream measured plate profile 
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(b) Downstream measured plate profile and finite element prediction 
 
 
 

Figure 4. Validation of the model for a roughing stand 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5. R4 roll wear profile. 
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Figure 6. R4 parametric analysis 



 

  

 
 

Stand F10    
Coil N° Width Time In Time Out 

 [mm] [sec] [sec] 
1 1046 0 60 
2 1040 155 215 
3 1042 286 345 
4 1045 373 432 
5 1044 469 531 
6 1041 567 624 
7 1146 653 713 
8 1143 753 813 
9 1257 856 915 
10 1260 962 1021 
11 1262 1077 1136 
12 1263 1205 1264 
13 1264 1309 1368 
14 1262 1415 1474 

 Time of the interruption of the refrigerating water 1535 sec 
 Begining of the measurement of roll surface temperature  1795 sec 
 Ending of the measurement of roll surface temperature 1975 sec 

 
(a) Rolling schedule 

 
 
 

 
 

  
 
 

(b) Work roll finite element model (axisymmetric model) 
 
 

Figure 7. Simulation of the work rolls thermal evolution. 
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(c) Thermal evolution at point A (numerical simulation result) 
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(d) Thermal evolution at point B (numerical simulation result) 
                                      
 
 

Figure 7. (continued) 
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 (e) Thermal evolution at point C (numerical simulation result) 
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(f) Thermal evolution at point D (numerical simulation result) 
 
 
 

Figure 7. (continued) 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(a) Temperature map of the work roll at the instant at which the last coil exits the stand F10 
(tout). 

 
 
 
 
 

Figure 8. Work rolls temperature distribution 
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(b) Work roll radial temperature distribution (y=0) at tout. 
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(c) Work roll surface temperature distribution at tout. 
 
 

Figure 8. (continued) 
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Figure 9. Work roll crown at the F10 stand predicted using TCROWN 



 

 

 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 10. Validation of the finite element results for the F10 stand. 
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hp : heat transfer coefficient between plate and roll (assumed constant)

hw : cooling water heat transfer coefficient 

 
 
 

Figure 11. Heat transfer capacity for two cooling systems considered at the F10 stand. 
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Figure 12. Work roll surface temperature distribution produced by each of the analyzed 

cooling systems at the F10 stand. 
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Figure 13. Work roll crowns produced by each of the analyzed cooling systems at the 
F10 stand. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 14. Plate profiles predicted by METFOR for each of the two cooling systems 
considered 

2.14
2.16
2.18
2.20
2.22
2.24
2.26
2.28
2.30

0 100 200 300 400 500 600 700

Transversal distance from the roll center [mm]

Th
ic

kn
es

s [
m

m
]

Configuration A

Configuration B



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Not to scale

40 mm. 40 mm.

t tt 231

 
 

( )
2

 crown  plate 21
3

ttt +−=  

 
 

Figure A1. Plate profile and crown 



 

 

 
 
 
 
 

 
 
 

(a) roll with positive crown  
 
 
 
 
 
 

 
 
 

(b) roll with negative crown 
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Figure A2. Rolls profile and crown 


