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ABSTRACT 
In order to develop an engineering tool for modelling 2D metal forming processes we implemented in the 
flow formulation the pseudo-concentrations technique and a quadrilateral element based on mixed 
interpolation of tensorial components (QMITC). By doing this we obtained a reliable and efficient Eulerian 
formulation for modelling steady and transient metal forming problems. Some cases were analysed in order 
to test the performance of the formulation. 
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INTRODUCTION 

For modelling industrial metal forming processes the use of rigid-viscoplastic1 material models 
in the flow formulation2-4 is usually a very effective and reliable engineering option. Although 
residual stresses and elastic spring-back effects are not predicted using the flow formulation, the 
results provided by this formulation have proved to be very accurate for forming load and plastic 
strain predictions as well as for the prediction of the velocity distribution throughout the domain 
of the problem. 

In this paper we present several finite element techniques that we use in our implementation 
of the flow formulation in order to improve the quality and efficiency of the computational 
predictions. 

In the following sections we will discuss: 

• a finite element formulation apt for modelling incompressible rigid-viscoplastic problems; 
• a free surface algorithm for stationary problems that does not move nodes and therefore 

avoids the need for remeshing; 
• an algorithm for modelling transient processes, for materials with or without strain-hardening, 

using an Eulerian formulation in a fixed or arbitrarily moving mesh. This Eulerian formulation 
avoids element distortions and therefore the need for remeshing usually encountered in the 
Eulerian-Lagrangian techniques; 

• an algorithm for solving frictional contact problems. 

In the last section we present some numerical experimentation to illustrate the behaviour of 
the presented computational techniques. 
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THE QMITC ELEMENT 
Using the technique of mixed interpolation of tensorial components (MITC), the quadrilateral 
QMITC element was developed for elasto-plastic problems (Lagrangian description of 
motion5,6). With the objective of using the QMITC element with the flow formulation (Eulerian 
description of motion) to model metal forming processes, the QMITC element was implemented 
for the analysis of 2D incompressible Stokes flow in Reference 7. 

In this formulation we use: 
• the penalty method to impose the incompressibility constraint; 
• the velocity interpolation corresponding to a 5-node isoparametric element8,9. The velocity 

degrees of freedom corresponding to the central node are condensed at the element level; 
• the following interpolations for the strain-rate components: 

where i = r,s for plane strain-rate problems and i = r,s,t for axisymmetric problems. 

In the above, B,C,D,O are the covariant strain-rate components at sampling points A, B, 
C, D and 0, evaluated from the velocity interpolation and referred to the contravariant base 
vectors at the element centre. The sampling points natural coordinates are A(0, 1/√3), 
B(- 1/√3, 0), C(0, -1 /√3) , D(1/√3, 0), O(0, 0). |J0| is the determinant of the element Jacobian 
at point O. |J| is the determinant of the element Jacobian at the point of natural coordinates (r, s). 

The QMITC element in incompressible Stokesian flows presents the following features7: 
• the element does not contain any spurious zero energy mode8,9; 
• the element satisfies Irons' patch test9; 
• the element does not lock either in plane or axisymmetric strain-rate problems10; 
• the predictive capabilities of the element are very insensitive to distortions; 
• the oscillations in the pressure solution (checkerboard) tend to zero as the mesh is refined9; 
• the element presents predictive capabilities comparable to higher order u/p and penalty 

elements. 
An accurate modelling of metal forming processes requires the use of the rigid-viscoplastic 
Perzyna-type constitutive equation (1) with an associate flow rule (maximum viscoplastic 
dissipation) and the von Mises yield function (incompressible flow). The QMITC incompressible 
Stokes flow formulation, fulfilling the above requirements, is apt for modelling metal forming 
processes. 

A FREE SURFACE ALGORITHM FOR STATIONARY PROBLEMS 
We use a free surface algorithm based on the pseudo-concentrations technique developed by 
Thompson11,12. This algorithm describes free surfaces inside a fixed mesh, avoiding mesh 
distortions usually associated to standard free surface algorithms4 and therefore avoiding the 
need for remeshing procedures. 

The pseudo-concentrations technique assigns a pseudo-concentration to each node (ci for 
i = 1 , . . . , N) (e.g. ci > 0 indicates that material is present at node i while ci < 0 indicates the 
absence of material therefore if ci = 0 node i is on the free surface11-13). The 
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Table 1 Solution algorithm for stationary problems 

I. Initial guess for pseudo-concentrations: c(0) 

II. Equilibrium equations: 
K(c(0)) (0) = R 

III. Reference unbalanced power: 

IV. i = 1 
V. Advection equation for pseudo-concentrations: 

VI. Equilibrium equations: 

VII. Unbalanced power: 
= [∆ (i)]T·[R-F(i-1 )] 

VIII. IF ( < ETOL· REF) THEN 
GO TO IX 
ELSE 
i = i + 1 
GOTO V 

IX. 

X. Calculate and σ 
XI. END 

pseudo-concentrations are interpolated inside the QMITC element using the interpolation 
functions of a 4-node isoparametric element (hi for i = 1 , . . . , 4)8,9: 

In general the free surfaces (c = 0) will be interior to the elements. 
When solving the equilibrium equations, for element points where c > 0 we use the actual 

material properties while for element points where c < 0 we use an artificial (low) viscosity (e.g. 
vactual = v/1000). 

Given a velocity distribution (ů) in the mesh that satisfies the incompressibility condition 
(∇·ů = 0), the pseudo-concentrations must satisfy the advection equation: 

ů·∇c = 0 (3) 
For the solution of (3) we make use of the upwinding procedure described in Reference 14. 
In Table 1 we present our iterative algorithm for the solution of stationary problems. 

TRANSIENT PROBLEMS 
For solving transient problems using the flow formulation, Eulerian-Lagrangian methods are 
usually implemented4. In these methods the mesh is updated in each incremental step and 
remeshing procedures are necessary when the element distortions reach an unacceptable level. 



326 E. N. DVORKIN AND E. G. PETÖCZ 

Instead of using an Eulerian-Lagrangian formulation we implemented an Eulerian 
formulation. We model transient problems using Thompson's pseudo-concentrations 
technique11,13. For this purpose we either use a fixed mesh or a mesh moving with an arbitrary 
velocity field (ům) that satisfies the geometrical boundary conditions. 

The transport equation for the pseudo-concentrations is, for an incompressible flow: 

For the integration of (4) we use either the upwinding procedure15,16 (conditionally stable) 
or the Crank-Nicholson algorithm17 (unconditionally stable). 

Many researchers found out that after integrating (4) for the incremental time step from time 
(load level) t to time (load level) t + ∆t the use of a smoothing algorithm is necessary. In our 

Table 2 Solution algorithm for transient problems 

I. Data: 'c, 

II. Equilibrium equations: 

III. Reference unbalanced power: 
t+∆tĖREF = [t+∆t (0) - T·[t+∆tR - tF] 

IV. i = 1 

V. Transport equation for pseudo-concentrations: 

VI. Transport equation for the equivalent plastic strain: 

VII. Equilibrium equations: 

VIII. Unbalanced power: 

t + ∆tĖi = [∆t+∆t (i)]T.[1 +∆tR - t +∆tF(i - 1)] 
IX. IF (t + ∆tĖi < ETOL. t + ∆tĖREF) THEN 

GO TO X 
ELSE 
i = i + 1 
GO TO V 

X. t + ∆t = t +∆t (i) 
+ [t+∆tů - ůM]·∇t + ∆tc = 0 => t+∆tc 

XI. Calculate t+∆tσ 
XIII. END 
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numerical experimentation we found that if the initial distribution of pseudo-concentrations 
(t = 0) is smooth enough, then no smoothing algorithm is necessary. This is a very important 
aspect for the computational efficiency of the method. 

For tracking the equivalent viscoplastic strain , and therefore the strain-hardening, at any 
point we solve the following equation: 

where is the equivalent viscoplastic strain-rate and, 

The solution procedure for (5) is analogous to that of (4) with the addition of a source term, 
treated consistently with the Petrov-Galerkin approach18. 

In Table 2 we present our incremental iterative algorithm for the solution of transient problems. 

THE FRICTIONAL CONTACT PROBLEM 

Friction 
Between pairs of frictional surfaces we consider the constant friction law2-4,19: 

(6) 

where m is the friction coefficient (0 ≤ m ≤ 1), ůr is the relative velocity between the two surfaces 
and t is the tangent unit vector to the surfaces. 

In order to improve the numerical behaviour of the algorithm we use instead of (6) the 
following approximation2: 

(7) 

where scale is a numerical factor that in our implementation is taken as: 
scale 

in the above is a characteristic interface tangential velocity for the problem under consideration. 

Contact 
In order to prevent the effects of the incompressibility of the artificial material (c < 0) when 

it gets trapped, we consider contact boundary conditions for ůn (normal relative velocity) of the 
form: 

ůn = free for c < 0 (8a) 
ůn = 0 for c ≥ 0 (8b) 

In the case of sticking condition at the wall, the two degrees of freedom are suppressed if c ≥ 0. 
In Figure la we show the results for a problem of mould filling obtained imposing as contact 

boundary conditions ůn = 0 during the complete solution procedure; it is evident the effect of 



328 E. N. DVORKIN AND E. G. PETÖCZ 

the spurious 'artificial material bubbles' that get trapped. In Figure 1b we show the results 
obtained using the c-dependent boundary conditions (8): no 'artificial material bubbles' are 
present. 

On the other hand, the c-dependent boundary conditions can cause a loss of the actual material 
because the velocity is only set to zero once the material has already reached the boundary. In 
the numerical example for mould filling we investigate the magnitude of this error, showing that 
it can be reduced to a very small value. 

NUMERICAL EXPERIMENTATION 
In this section we present several examples aimed at illustrating the behaviour of the presented 
finite element techniques. 

Stationary problems 
Swelling of Newtonian and polymeric flows. In Figure 2 we present the results we obtained for 

the swelling of plane and axisymmetric flows, considering the following material law: 

In the above n = 1.0 corresponds to a Newtonian fluid. Our results are compared with those 
published in Reference 20. 

Rolling of a perfectly-plastic sheet. For analysing this problem we make two simplifications: 
rigidly-perfectly plastic material; 2D plane strain-rate flow. 

At the roll we employ the constant friction law (7) with m = 1.0 (maximum possible friction). 
In Figure 3a we illustrate the dimensions (h = 0.8 and roll radius = 5.5) for our case and the 

velocity boundary conditions; in Figure 3b we illustrate the pseudo-concentration boundary 
conditions and in Figure 3c we show the QMITC mesh. 

We have analysed the case for several values of the velocity at the entry and obtained the 
following results for each case (maintaining the roll angular velocity): the pseudo-concentrations 
distribution; the value of the inlet traction; the pressure distribution on the roll. 

In Figure 3d we show the pseudo-concentrations distribution for one of the analysed cases. 
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n 

1.0. 

0.7 

0.5 

Rf/Ro 

Ref.[20] 

1.127 

1.072 

1.040 

This work 

1.133 

1.074 

1.040 

(d) r e s u l t s for a polymeric f l u i d in axisymmetric flow 

Figure 2 Swelling problems 
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In Figures 3e to 3h we present our solution for the pressure distribution on the rolls for several 
values of the inlet traction (σin/σ0, where σ0 is the yield stress) compared to the approximate 
solution obtained using the slab method21. 

Transient problems 
Filling of a mould. In this problem we simulate the injection of a power law fluid into an 

axisymmetric mould22. For this fluid: 

and for the analysed case n = 0.0. 
In Figures 4a to 4c we show the fluid penetration into the mould at three different times, and 

in Figure 4d we show the error in the volume conservation at different time steps. 
This is an interesting problem to test the accuracy we can expect using the c-dependent 
)undary conditions in (8). This accuracy is measured by the volume conservation. 
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Ring compression test (perfectly plastic material). In Figure 5 we present our results for a ring 
compression test considering a rigid-perfectly plastic material and a 6:3:2 (outer diameter:inner 
diameter:height) ring geometry. Our results are compared with the upper-bound results published 
in Reference 23. It is important to point out that, for the FEM solution the inner radius was 
measured in the transverse symmetry plane. 

Ring compression test (work hardening material). In Figure 6 we present our results for a ring 
compression (6:3:2) considering a rigid-plastic material with the following hardening law: 

σy = σ0(1 + 0.81 ) 
and a friction coefficient m = 1.0. 
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Our results are compared with the experimental results published in Reference 24. 

Compression of a cylinder (work hardening material). In Figure 7 we show our results for the 
equivalent plastic strain distribution corresponding to three different hardening moduli. 

It is evident that an increase in the work hardening modulus causes a decrease in the plastic 
strain localization. 

Forging with closed dies. For this problem shown in Figure 8 a rigid-perfectly plastic material 
was considered and a maximum friction condition (m = 1.0) at the walls was used. 

Our results are compared with the experimental results published in Reference 2. 

CONCLUSIONS 
In order to develop a reliable and efficient engineering tool for modelling 2D metal forming 
processes we implemented in the flow formulation the quadrilateral QMITC element and the 
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pseudo-concentrations technique developed by Thompson obtaining an Eulerian formulation 
for modelling steady and transient problems. 

In this paper we discuss: 

(1) the QMITC element formulation which fulfils all the requirements for a reliable modelling 
of incompressible Stokes flows: no spurious zero energy modes, satisfaction of Irons' patch 
test, no locking behaviour, a high predictive capability and very insensitive to element 
distortions. Regarding this last point it is important to point out that: it was shown25 that 
for elements with only eight exterior degrees of freedom, insensitivity to element distortions 
is competitive with satisfaction of Irons' patch test. In this regard we decided to strictly 
satisfy the patch test; by adding interior degrees of freedom26 the element performance 
can be improved, but increasing the computational cost. In this regard we decided to add 
only two interior degrees of freedom5. 

(2) A free surface algorithm for stationary problems based on the pseudo-concentrations 
technique. This algorithm does not alter the elements geometry by moving nodes. 

(3) An algorithm for transient problems also based on the pseudo-concentrations technique. 
This algorithm can consider materials with strain-hardening characteristics and uses an 
Eulerian formulation avoiding therefore mesh distortions. 

(4) An algorithm for solving frictional contact problems. 
The numerical results presented in the previous section show that the implemented technique 

for modelling metal forming processes using an Eulerian formulation27 is very reliable and 
efficient. 
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