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Abstract

Mathematical models for the evaluation of residence time distribution (RTD) curves on a large variety

of vessels are presented. These models have been constructed by combination of di¤erent tanks or

volumes. In order to obtain a good representation of RTD curves, a new volume (called convection

di¤usion volume) is introduced. The convection-di¤usion volume allows the approximation of di¤erent

experimental or numerical RTD curves with very simple models. An algorithm has been developed to

calculate the parameters of the models for any given set of RTD curve experimental points. Validation

of the models are carried out by comparison with experimental RTD curves taken from literature and

with a numerical RTD curve obtained by three dimensional simulation of the ‡ow inside a tundish.

I Introduction

The residence time of an element of ‡uid is the time it spends inside the vessel. Since di¤erent elements of

‡uid spend di¤erent times inside the vessel, there is a distribution of residence times for each vessel. The

residence time distribution (RTD) gives important information about the behavior of the ‡ow inside the

di¤erent vessels of the continuous caster. Both experimental and numerical techniques can be employed
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to obtain the RTD [1]. In both cases the basic idea is to inject a pulse of a tracer at the entrance of the

vessel and analyze the concentration of tracer at the exit as function of time. This function is known as the

RTD curve. RTD curves are generally represented in terms of dimensionless variables (to be de…ned in the

following section) and typically take the shape of the curve depicted in Figure 1.
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Fig. 1: Typical RTD curve.

Experimental RTD curves are obtained in water models by the injection of a salt solution or a dye

as a tracer. In the former case the concentration at the exit of the vessel is obtained by measuring the

conductivity of the ‡uid. In the latter, colorimetry or spectrophotometry techniques are used to get the

concentration.

RTD curves can also be obtained by numerical methods. In this case the …rst step is to calculate the

turbulent ‡ow inside the vessel. Di¤erent techniques could be applied to solve the steady state turbulent

Navier-Stokes equations. The k-" method, where k is the turbulent kinetic energy and " is the turbulent

kinetic energy dissipation rate, is the most popular [2]. Once the velocity distribution inside the vessel is

obtained, the addition of tracer needs to be numerically simulated. A turbulent convection di¤usion equation

for the concentration of tracer must be solved. A narrow step function has to be imposed at the entrance as

boundary condition to simulate the tracer pulse injection. The RTD curve is the concentration of tracer at

the exit of the vessel as function of time.

A di¤erent approach to the analysis of residence times inside vessels is the numerical modeling by tanks
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or volumes [3]. In these models the vessel is divided into di¤erent regions (the tanks or volumes) where the

‡ow is supposed to behave in a very simple way. For each volume, the concentration evolves according to a

speci…c di¤erential equation. The models presented in this paper are based on this method.

The numerical modeling of the ‡ow inside vessels by tanks or volumes is widely used in literature, as

described in an extensive review published by Mazumdar and Guthrie [1]. Many of these works present

models obtained by combinations of mixing volumes, plug ‡ow volumes and dead volumes [3]. However, a

good description of RTD curves in terms of these models (called mixed ‡ow models) is not always possible.

To improve the accuracy of the models, di¤erent modi…cations were introduced. Martin [4], for instance,

proposed a modi…cation of the tank in series model (where the system is divided in several identical mixing

volumes) by considering a non-integer number of tanks. Sahai and Ahuja [5], on the other hand, introduced

the use of dispersed plug ‡ow volumes instead of the standard plug ‡ow volumes in their study of tundish

RTD curves.

The dispersed plug ‡ow volume is based on the dispersion model introduced by Levenspiel and Smith [6]

in the chemical reactor analysis, and represents a deviation from the ideal plug ‡ow caused by a longitudinal

mixing. In the dispersion model the evolution of tracer concentration in any vessel is modeled by the

one dimensional transient convection-di¤usion equation. Dispersion models describe accurately the mixing

process if the di¤usivity is small , but are de…cient when di¤usivity is large [3], [7].

In Section IV we introduce a new kind of volume named convection-di¤usion volume. This volume is also

based on dispersion models and is able to describe RTD curves in vessels with any amount of di¤usion. We

comment the physical interpretation of this new convection-di¤usion volume and explain its di¤erence with

the dispersed plug ‡ow volume. In Section III we propose a simple model consisting of a single convection-

di¤usion volume and a dead volume; experimental RTD curves found in literature are analyzed in terms

of this model. In order to represent two peaked RTD curves, another model is proposed in Section IV,

which consists of two convection di¤usion volumes and a dead volume. This model is also used to analyze

experimental data, specially two peaked RTD curves. In Section V we present a three dimensional numerical

analysis of a four line tundish and the interpretation of its RTD curves in terms of the model described in

Section IV. The last section is devoted to conclusions.
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II Convection-Di¤usion volumes

A Basic equations

Let’s consider a system with a volume V of ‡uid. The ‡uid enters and exits the system at a ‡ow rate Q.

At the entrance of this system a tracer is being injected and we want to describe the concentration of tracer

at the exit. A convection-di¤usion one dimensional equation model is used to represent the evolution of

concentration of tracer inside the volume,

@C (x; µ)
@µ + @C (x; µ)

@x = 1
Pe

@2C (x; µ)
@x2 : (1)

where C(x; µ) is the dimensionless tracer concentration and x and µ are the dimensionless time and position

expressed in terms of the length of the domain, L; and the theoretical residence time ¿ = V
Q = L

v (v is the

velocity inside the domain, assumed constant). Pe is the turbulent Péclet number, Pe = v L
D , where D is

the turbulent di¤usivity.

We want to solve this equation for all 0 < x � 1 and µ > 0 according to the following initial and

boundary conditions,

C (x; 0) = 0 (2)

C(0; µ) = C0(µ)

where C0(µ) is any given function of time.

The solution of Eq. (1) which satis…es conditions (2) and does not diverge for large values of x, is

C (x; µ) =
Z µ

0
KP e(x; µ ¡ ¿)C0(¿)d¿

where the kernel KP e(x; µ) is de…ned by

KP e(x; µ) = x
r

Pe
4 ¼ µ3 exp

µ
¡Pe (x ¡ µ)2

4µ

¶

The kernel satis…es the di¤erential equation, the initial condition and the integral property
1R
0

KPe (x; µ) dµ =

1 for all x > 0. Since the kernel vanishes at x = 0 for all µ > 0; the boundary condition for the kernel may

be written as KP e (0; µ) = ±(µ), where ±(µ) is Dirac’s delta function. From these properties of the kernel it

is possible to show that C (x; µ) satis…es Eq. (1) with conditions (2).
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We are interested in the concentration of tracer at the outlet of volume x = 1:

C (1; µ) =
Z µ

0
KP e(1; µ ¡ ¿)C0(¿)d¿ (3)

with KPe(1; µ) given by

KP e(1; µ) =
r

Pe
4¼µ3 exp

µ
¡Pe(1 ¡ µ)2

4µ

¶
: (4)

Now, we introduce the convection-di¤usion volume de…ned by its volume V and its Péclet number Pe:

In this volume, if the concentration at the entrance C0(µ) and the ‡ow rate Q are given, the concentration

at the exit is calculated from Equation (3):

B Physical interpretation

From the properties described in the preceding section we can observe that, if C(0; µ) = ±(µ); then

C(1; µ) = KP e(1; µ). Consequently, the kernel KP e(1; µ) may be regarded as the tracer concentration leaving

the system, when a pulse of concentration is injected at the system entrance at µ = 0.

The convolution integral in Eq. (3) indicates that the outcoming concentration at time µ is in‡uenced

by the whole history of the concentration at the entrance previous to time µ. Also, since the kernel at time

µ is the response of the system to a pulse of concentration at the entrance at time µ = 0, C(1; µ) may be

considered as the response of the system to a series of pulses of amplitude C(0; ¿)d¿ injected at the entrance

at time ¿ .

The set of equations described in the previous section were deduced under the assumption of open

system. That is, the di¤usivity is considered continuous across the input - output boundaries of the system

[7].

The Péclet number indicates how di¤usive the ‡ow in the system is.

² The limit Pe ! 1 corresponds to purely convective ‡ow with no di¤usion. In this limit KP e(1; µ)

! ±(1 ¡ µ) and C(1; µ) ! C(0; 1 ¡ µ). This is the expected solution for the concentration of tracer in

a system with no di¤usion, that is, a plug ‡ow system.

² On the other hand, when Pe ! 0; di¤usion is very large and the concentration at the entrance

propagates instantaneously along the volume. The function KPe(1; µ) presents a sharp peak near
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µ = 0 vanishing anywhere else and C(1; µ) ! C(0; µ): This result contrasts with the large di¤usivity

limit for closed systems C(1; µ) ! R µ
0 e¡(µ¡¿)C0(¿)d¿ [7].

Let’s analyze the behavior of C(1; µ) in a convection-di¤usion volume when a pulse is injected at the

entrance. In this case C(1; µ) = KPe(1; µ) is the RTD curve of a system represented by a single convection-

di¤usion volume. Since C(1; 0) = 0 (initial condition, Eq. (2)) and C(1; µ) ! 0 as µ ! 1 (from Eq. (4)),

the curve must reach a maximum value Cp at a certain time µp: The general appearance of such a curve has

already been shown in Figure 1. The values of µp and Cp are given by

µp = ¡3 +
p

9 + Pe2

Pe (5)

and

Cp = C(1; µp) =
s

Pe
4 ¼ µ3

p
exp

Ã
¡Pe (1 ¡ µp)2

4 µp

!
:

The …rst expression shows that µp ! 0 when Pe ! 0 and µp ! 1 when Pe ! 1. That is, in the limit of

perfectly mixed ‡ow (Pe ! 0) the peak is at µ = 0; since the concentration behaves as ±(µ): For larger values

of the Péclet number, µp increases. When the ‡ow is dominated by convection µp approaches the unity and

in the limit of pure plug ‡ow µp = 1; in agreement with the fact that, in this limit, the concentration tends

to ±(1 ¡ µ): In consecuence the Péclet number can be estimated from the position of the RTD curve peak,

Pe = 6 µp
1 ¡ µ2

p
: (6)

C Comments on boundary condition

It is important to note that the dispersion model of Levenspiel and Smith makes use of a rather di¤erent

function to describe the response of the system to a pulse injected at the entrance [6],

bKP e(x; µ) =
r

Pe
4¼µ exp

µ
¡Pe(x ¡ µ)2

4µ

¶
= µ

x KPe(x; µ):

The kernel bKP e(x; µ) was obtained from a di¤erent solution of Eq. (1) (see reference [6]). At the entrance,

this kernel does not represent a pulse, since it does not vanish for µ > 0,

bKPe(0; µ) =
r

Pe
4 ¼ µ exp

µ
¡Pe µ

4

¶
:
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In Figure 2, the function bKPe(0; µ) is plotted as function of µ for di¤erent values of the parameter Pe: For

large values of the Péclet number (i.e. if di¤usion is low) the concentration decreases rapidly away from

µ = 0 and in the limit Pe ! 1, bKP e(0; µ) tends to form of a pulse. However, for general values of Pe,

bK(0; µ) presents long tails. This means that the tracer is injected at the entrance of the system during a

certain period of time instead of being injected instantaneously at µ = 0: The function bKP e(x; µ) can be

regarded as the response of the system to a pulse at the entrance, but only in the limit of plug ‡ow. It is

easy to see that in this limit,

KPe(1; µ) ¼ bKPe(1; µ) ¼
r

Pe
4¼ exp

µ
¡Pe(1 ¡ µ)2

4

¶
:
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Fig. 2: Concentration at the origin as function of

time, for the solution of Eq. (1) described in

reference [6]

It is also interesting to compare the average residence times, µav = R 1
0 µ KP e(1; µ)dµ and bµav =

R 1
0 µ bKPe(1; µ)dµ: It can be seen that bµav = 1 + 2

P e (see reference [6]) only remains close to the unity in

the limit of plug ‡ow and diverges on the limit of high di¤usion. On the other hand, µav = 1 for any value

of Pe:

As pointed out in [7], [3] the dispersion model can be used only for systems with relative small degree

of mixing. Is our belief that the use of the kernel KP e(x; µ) instead of bKP e(x; µ) allows the application of

the dispersion model to more general situations.
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III A simple vessel model

In this Section we will describe the whole vessel with a very simple model composed by a convection di¤usion

volume (Va: active volume) and a dead volume (Vd = V ¡ Va), to take into account dead or slowly moving

‡ow regions. It is assumed that in the active zone the ‡ow behaves as one dimensional with a characteristic

time Va
Q . When the concentration at the entrance of the model corresponds to a pulse, the concentration at

the exit of the model can be obtained from Eq. (3)

C(1; µ) = 1
va

KP e

µ
1; µ

va

¶
=

r
va Pe
4¼ µ3 exp

Ã
¡Pe (va ¡ µ)2

4 va µ

!
(7)

which is the mathematical expression for the RTD curve. This curve reaches its maximum when

µp = va
¡3 +

p
9 + Pe2

Pe : (8)

The model has two dimensionless parameters, the Péclet Number Pe and the fraction of the active

volume va = Va=V . It is useful to relate these parameters to the values of µp; Cp and µav (where

µav = R 1
0 µ C (1; µ) dµ is the average residence time). The following expressions were obtained,

va = µav (9)

vd = 1 ¡ µav

Pe = 6 µp µav
µ2

av ¡ µ2
p
: (10)

Then, the parameters of the simple vessel model va and Pe can be estimated from the values of µav and µp

of an experimental RTD curve.

However, the numerical calculation of µav from experimental curves can be di¢cult, specially for RTD

curves with very long tails. In order to …nd another way to estimate the parameters of the model, the

product Cpµp is going to be considered. This product does not depend on va and is only function of Pe;

Cpµp = a(Pe) = Peq
4¼ ¡¡3 + p9 + Pe2¢

exp
"
¡

¡Pe + 3 ¡
p

9 + Pe2¢2

4 ¡¡3 +
p

9 + Pe2¢
#

(11)

In a RTD diagram, a(Pe) represents the rectangular area subtended by the origin and the peak of

the curve (see Figure 3) and is a monotonous increasing function of the Pe (see Figure 4). We found that
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a(Pe) ! a0 ' 0:154 when Pe ! 0, and that a(Pe) !
q

P e
4¼

¡1 ¡ 3
4P e

¢ when Pe ! 1. This asymptotic

expression can be inverted to obtain a good estimation of Pe when the ‡ow has small degree of di¤usion,

Pe ¼ 3
4 + 2¼ (Cpµp)2

Ã
1 +

s
1 + 3

4¼ (Cpµp)2
!

: (12)

For Pe > 5 (which corresponds to a > 0:55), the Péclet number can be approximated by this expression

with an error smaller than 5 %:
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Fig. 3: Relationship between the location of the peak

of the RTD curve and the function a(Pe).
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Fig. 4: Function a(Pe) which relates de Peclet number

to the location of the peak of the RTD curve..
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Case 1 2

Authors Barrón-Meza et al Zong et al.

Reference [8] [9]

V [l] 13.7 30.0

Q [l=s] 0.2066 0.0666

type of vessel one strand tundish continuous re…ning vessel

Number of Figure 5,6 and 7 8, 9 and 10

Table I: Cases considered for the validation of the

simple vessel model.

A Validation of the simple vessel model

The validation of the simple vessel model proposed in this section was carried out by matching two

experimental RTD curves found in literature and described in Table I.

The matching of experimental data was carried out using three di¤erent procedures to estimate the

parameters Pe and va,

Procedure 1: Minimization of the square of the distance between the numerical results of Eq. (7) and

the experimental data of the RTD curves, using the Levenberg-Marquardt algorithm. Figures 5 and 8 show

the results for this procedure for the two cases described in Table I.

Procedure 2: Numerical estimation of the average residence time using the experimental data and

evaluation of Pe and va using Eq. (10) and Eq. (9). The resulting RTD curves are presented in Figures 6

and 9 for both cases.

Procedure 3: Evaluation of the product µpCp from the RTD curve and calculation of Pe from Figure 4

or from Eq. (11) (in this case a nonlinear equation must be solved using, for example, a Newton Raphson

technique) or using the asymptotic expression Eq. (12). Finally va is obtained from Eq. (8). Results are

shown in Figures 7 and 10.

The values Pe and va obtained with the di¤erent procedures for both cases are shown in Table II.

The procedure 1 provides the best …tting but involves the solution of a nonlinear minimization problem.
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Procedure Parameter Case1 Case2

1 Pe 5.26 3.64

1 va 1.0 0.84

2 Pe 4.11 3.77

2 va 0.97 0.76

3 Pe 4.198 3.02

3 va 0.96 0.88

Table II: Numerical values of the parameters Pe and

va

Procedures 2 and 3 give a reasonable estimation of the parameters with very little information from the

experimental data. The accuracy of these two procedures depend strongly on the reliability of the evaluation

of µp and µav or Cp; from the experimental RTD curve.
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Fig. 5: Comparison of experimental results [8] and

the simple vessel model with a least square

matching (procedure 1).
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Fig. 6: Comparison of experimental results [8] and the

simple vessel model using Eq. (10) and Eq. (9)

(procedure 2).
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Fig. 7: Comparison of experimental results [8] and the

simple vessel model using Eq. (11) and Eq. (8)

(procedure 3)
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Fig. 8: Comparison of experimental results [9] and

the simple vessel model with a least square

matching (procedure 1).
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Fig. 9: Comparison of experimental results [9] and the

simple vessel model using Eq. (10) and Eq. (9)

(procedure 2).
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Fig. 10: Comparison of experimental results [9] and

the simple vessel model using Eq. (11) and

Eq. (8) (procedure 3).

IV A multivolume vessel model

The model described above succeeded in representing a variety of experimental RTD curves. However it

fails to describe correctly RTD curves with two peaks. These curves arise when short circuits are present in

the system [10]. Consequently a model consisting of two convection-di¤usion volumes connected in parallel

and a dead volume is proposed (Figure 11).

For a steady state problem where both the ‡ow rate at the entrance of the vessel Qin, and the ‡ow rate

at the exit of the vessel, Qout, are constant in time, the following relations hold

Qin = Qout = Q1 + Q2 = Q ; Qd = 0

The entrance tracer pulse is modeled by a Dirac’s delta function

Cin(µ) = C1
in(µ) = C2

in(µ) = ±(µ) (13)

To calculate the dimensionless concentration at the exit of each of the convection-di¤usion volumes,

Equation (3) must be applied, with Eq. (13) as boundary condition. For volume i (i = 1; 2) the following
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V2V1
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Vd
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C2
in    Q2

inC1
in    Q1

in

Cout

Cout      Qout

Cout      Qd

C2
out    Q2

outC1
out    Q1

out

Fig. 11: Scheme of the multivolume tundish model.

expression is obtained

Ci
out(µ) = qi

f i
V

KP ei

µ
1; µ qi

f i
V

¶

where the relative ‡ow rate qi = Qi=Q and the volume fraction f i
V = V i=VT were introduced.

Finally the concentration exiting the system is obtained by tracer conservation which leads to the

following expression

Cout(µ) =
¡q1¢2

f1
V

KP e1

µ
1; µ q1

f1
V

¶
+

¡q2¢2

f2
V

KP e2

µ
1; µ q2

f2
V

¶
: (14)

This expression contains …ve dimensionless parameters, f1
V ; f2

V ; q1; Pe1 and Pe2 (the parameter q2 is

given by q2 = 1¡q1). All the parameters must be positive and the volume fractions must satisfy the inequality

f1
V + f2

V � 1: Note that the dead volume in‡uences the result indirectly by reducing the convection-di¤usion

region (otherwise f1
V + f2

V = 1).

Any experimental RTD curve is expected to be well represented by Equation (14) if suitable values for

the parameters are chosen. A numerical code (RESIDENCE [11]) was developed to …nd the set of parameters

which minimizes (in a L2 sense) the distance between a given experimental curve and Cout(µ): This program
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Case Authors V [l] Q [l=s] Vessel type Figure

1 Barrón Meza et.al [8] 13:7 0:2066 one strand tundish 12

2 Zong et al [9] 30:0 0:0666 continuous re…ning vessel 13

3 Chakraborty et al[13] 186:3 0:5046 one strand tundish 14

4 Singh et al[10] 86:2 0:155 one strand tundish 15

5 Zong et al [9] 30:0 0:0666 continuous re…ning vessel 16

Table III: Di¤erent RTD curves considered for the

validation of the model

Cases f1
V f2

V q1 Pe1 Pe2

1 0:00 1:00 0:00 1:00 5:26

2 0:23 0:54 0:23 12:12 4:00

3 0:29 0:71 0:42 3:03 5:63

4 0:87 0:025 0:87 3:59 6:64

5 0:0083 0:76 0:045 223:7 4:34

Table IV: Optimal values of the parameters.

was codi…ed in Fortran and makes use of the IMSL subroutine DBCLSF, which solves nonlinear least squares

problems using a modi…ed Levenberg -Marquardt algorithm [12].

A Validation of a multivolume vessel model

In order to validate the multivolume model, several experimental measurements found in literature are going

to be considered. In Table III we present the di¤erent cases to be analyzed.

In Table IV we show the optimal values obtained by our program RESIDENCE [11] and in the Figures

12 to 16 we compare numerical results and experimental measurements.

Case 1 (Figure 12) has already been considered in the previous section and was matched with the simple

model. From Table IV we see that the addition of a convection di¤usion volume does not a¤ect the results.
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Fig. 12: Comparison of experimental results [8] and

the multivolume vessel model.
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Fig. 13: Comparison of experimental results [9] and

the multivolume vessel model.
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Only one convection-di¤usion volume was really needed, since both f1
V and q1 vanish.

Case 2 (Figure 13) has also been addressed in the previous section. However in this case an improvement

in the accuracy of the approximation was achieved by the multivolume model.

The third example, taken from Chakraborty and Sahai [13], is plotted in Figure 14. For this RTD

curve, a traditional analysis becomes troublesome since numerical integration of the experimental data

renders µav > 1: However, the numerical results given by the multivolume vessel model show a reasonable

agreement with the experimental points.
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Fig. 14: Comparison of experimental results [13] and

the multivolume vessel model.

Up to now we have presented examples of RTD curves with a single peak. In case 4 (Figure 15) we

consider a two peaked RTD curve measured by Singh and Koria [10]. In this case each peak could be

associated to a volume, the sharpest peak corresponding to the smallest volume: Obviously, this kind of

curve could not be reasonably approximated by a single convection-di¤usion volume.

Another example of two peaked RTD curve is shown in Figure 16. Experimental points were also taken

from the work by Zong et al. [9] (with the water model described in the second example). Like the previous

example, the extremely sharp peak due to a short-circuit is modeled by a very small convection di¤usion

volume, V1; with a high Péclet number.
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Fig. 15: Comparison of experimental results [10] and

the multivolume vessel model.
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Fig. 16: Comparison of experimental results [9] and

the multivolume vessel model.
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V Analysis of a multiple line tundish

We present an example corresponding to a four line tundish with the volume of 3:44 m3 and a ‡ow rate of

49:94 l=min in each line. In a multiple line tundish, it is of interest to model the RTD curve resulting from

the addition of the RTD curves of each line [1].

In this example the RTD curves were obtained by the following procedure:

² The liquid steel ‡ow inside the tundish was calculated with a 3D numerical model using (k-L)-predictor

/(")-corrector turbulent model (where k is the turbulent kinetic energy, " is the dissipation rate of k,

and L is the mixing length). This numerical model was developed and tested in our previous publication

[14]-[19]

² Once the velocity …eld and turbulence variables were obtained, the tracer transport equation in a

turbulent stream was calculated by solving a transient 3D turbulent convection-di¤usion equation [20].

In the Figure 17 the internal and external lines of a symmetric four line tundish are shown, together

with the global RTD curve. The approximation of the global RTD curve, also shown in Figure 17, is obtained

using the multiple volume model described in section IV.

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8  Multivolume model
 Global RTD from 3D k-εε model
 Line 1 RTD from 3D k-εε model
 Line 2 RTD from 3D k-εε model

Di
m

en
sio

nle
ss

 co
nc

en
tra

tio
n

Dimensionless time

Fig. 17: Numerical results from a three dimensional

model of a four line tundish compared to

results from the present model
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The values of the parameter obtained for this case are: f1
V = 0:56 ; f2

V = 0:36 ; q1 = 0:54; Pe1 = 9:01;

Pe2 = 1:96

VI Conclusions

Two numerical models for the simulation of RTD curves in di¤erent vessels are presented. The comparison

of measured RTD curves with numerical results from the proposed models shows that these models can

successfully represent the general behavior of the ‡uid inside a variety of systems. The RTD curves used

for validation of the model include experimental data found in literature and numerical data obtained from

a full three dimensional computation of the turbulent ‡ow in a tundish.

The …rst of the models proved to be e¢cient to describe most of the one peaked RTD curves, in spite of

its simplicity. The second one, slightly more complex, represented successfully all the di¤erent RTD curves

under consideration, including those with two peaks.

The key feature of these models is the use of a new type of volume -the convection-di¤usion volume-

introduced in this work. The characteristics of this volume were deduced from the convection-di¤usion

one dimensional equation with a pulse boundary condition in the origin. For this reason, the use of

convection-di¤usion volume is not restricted to systems that exhibit small degree of mixing. This allows

the representation of the di¤erent vessels with very simple models.

In order to …nd the parameters of the model for a given experimental RTD curve, a numerical algorithm

was developed. We also found some simple mathematical relations that allow the estimation of the

parameters of the model from the characteristic parameters of the RTD curve.
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List of Symbols

a(Pe) Area subtended by the origin and the peak of the curve in a RTD plot.[dimensionless]

C Dimensionless concentration

C0 Dimensionless concentration at the vessel entrance.

Cp Dimensionless concentration of the peak of the RTD curve

D Mean turbulent di¤usivity [mm2= sec]

fi
V Volume fraction [dimensionless]

KP e Kernel associated to the convection-di¤usion volume [dimensionless]

bKP e Kernel developed by Levenspiel and Smith [6] [dimensionless]

L Length of the 1D domain [mm]

Pe Péclet number [dimensionless]

qi Relative ‡ow rate [dimensionless].

Q Flow rate in the vessel [mm3= sec]

v Mean velocity inside the 1D domain [mm/sec]

va Active volume fraction [dimensionless].

vd Dead volume fraction [dimensionless].

V Volume of the vessel [mm3]

x Dimensionless coordinate along the ‡ow direction.

µ Dimensionless time

µp Dimensionless time for the peak of the RTD curve

µav Average residence time [dimensionless].

¿ Theoretical residence time [sec]

22



Acknowledgements

The authors would like to thank Dr. E. Dvorkin for his continuous support in numerical methods and Dr.

Javier Etcheverry for his comments on some mathematical aspects of the paper.

This research was supported by SIDERCA (Campana, Argentina), SIDOR (Puerto Ordaz, Venezuela)

and DALMINE (Bérgamo, Italy).

23



References

[1] D. Mazumdar and R. I. L. Guthrie, ISIJ Int., 1999, vol 39, pp 524-547.

[2] B.E. Launder and D. B. Spalding: Comp. Meth. in Appl. Mech. And Engrg., 1974, vol. 3, pp. 269-289.

[3] J. Szekely and N. J. Themelis: Rate Phenomena in process metallurgy, John Wiley & Sons Inc., New

York,1971, pp 515-555.

[4] A.D. Martin, Chem. Eng. Sci., 2000, Vol. 6, pp 5907-5917

[5] Y. Sahai and R. Ahuja, Ironmaking Steelmaking, 1986, vol 13, pp 241-252.

[6] O. Levenspiel and W. K. Smith, Chem. Eng. Sci., 1957, vol. 6, pp 227-233.

[7] O.Levenspiel: Chemical Reaction Engineering, John Wiley & Sons Inc., New York, 1972, pp 277-347.

[8] M. A. Barrón-Meza, J. de J. Barreto-Sandoval and R.D. Morales, Metalurgical and Material

Transactions B, 2000, vol 31B, pp 63-74.

[9] J. Zong, K. Yi and J Yoon, ISIJ Int, 1999, vol. 39, pp 139-148.

[10] S. Singh and S. Koria, Steel Research, 1995, Vol. 66, pp. 294-

[11] RESIDENCE user manual, Center for industrial research, 2001.

[12] IMSL (1994), IMSL MATH/LIBRARY User’s Manual, Version 3.0, Visual Numerics, Inc., Houston,

Texas.

[13] S. Chakraborty and Y. Sahai, Metallurgical Transactions B, 1991, Vol. 22B, pp 429-437

[14] M. B. Goldschmit and M. A. Cavaliere, Appl. Mech. Rev., ASME, vol 48, n±11, part 2, 1995, pp

S211-S215

[15] M. B. Goldschmit and M. A. Cavaliere, Engineering Computations, 1997, vol 14, N± 4, pp 441-455.

[16] M. B. Goldschmit, R. J. Príncipe y M. Koslowski, 3rd. European Conference on Continuous Casting,

Madrid, Octubre 1998.

24



[17] M. B. Goldschmit, 80th Steelmaking Conference, Chicago, EEUU, 1997.

[18] M. B. Goldschmit, R. J. Principe and M. Koslowski, Int. J. Numer. Meth. in Eng., 1999, vol. 46,

1505-1519.

[19] M. Maldovan, J. Príncipe, G. Sánchez, A. Pignotti, and M. Goldschmit: ECCOMAS 2000, Barcelona

[20] M. B. Goldschmit, S. P. Ferro, G. F. Walter, V. G. Aranda and J. A. Tena Morelos, Metallurgical and

Material Transactions B, 2001, 32B, 537-546.

25


