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Abstract

Purpose
To develop a simple and efficient shell element for large strains hyper-

elastic analyses.
Approach
Based on the classical MITC4 shell element formulation a 3D shell

element with finite strain kinematics is developed. The new quadrilateral
shell element has 5 d.o.f. per node and two global d.o.f. to model the
thickness stretching. The shell element is implemented for hyperelastic
material models and the application of different hyperelastic constitutive
relations is discussed.

Practical Implications
The results obtained considering three of the hyperelastic material

models available in the literature are quite different when the developed
strains are relatively high; this indicates that, for analyzing actual engi-
neering examples, experimental data should be used to decide on the most
suitable constitutive relation.

Originality
The 3D version of the MITC4 element was developed

Keywords
shells; finite elements; hyperelasticity; finite strains;

1 Introduction

In 1970, Ahmad, Irons and Zienkiewicz presented a shell element formulation
that after many years still constitutes the basis for modern finite element anal-
ysis of shell structures [1]. The original formulation was afterwards extended to
material and geometric nonlinear analysis under the constraint of the infinites-
imal strains assumption [2] - [4].
The fundamental features of the A-I-Z shell element are:
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• Using isoparametric interpolation functions the displacements inside the
shell element are interpolated from three displacement-d.o.f. and two
rotation-d.o.f. at each node.

• The interpolated generalized displacement fields present Co continuity.

• The element is not based on any plate/shell theory but it is a continuum
element incorporating several assumptions that we list below (degenerated
solid element).

Kinematic and constitutive assumptions:

1. A straight line that is initially normal to the mid-surface remains straight
after the deformation.

2. A straight line that is initially normal to the mid-surface is not stretched
during the deformation.

3. The through-the-thickness stresses are zero.

It is important to remark that the second assumption precludes the consid-
eration of finite strain deformations.
Even tough the A-I-Z shell element was a breakthrough in the field of finite

element analysis of shell structures, it suffers from the locking phenomenon and
much research effort has been devoted to the development of A-I-Z type elements
that do not present this problem [5]-[9]-[10].
The MITC4 shell element [11]-[13] which was developed to overcome the

locking problem of the A-I-Z shell elements has become, since its development
in the early eighties, the standard shell element for many finite element codes.
However, the limitation of infinitesimal strains is still present in the MITC4
formulation.
Many researchers have developed shell elements that can model finite strain

situations, among them:

• An early contribution by Rodal and Witmer [14], where after the dis-
placement calculation the shell element thickness is updated neglecting
the elastic strains and invoking the incompressibility of the plastic flow.

• In 1983 Hughes and Carnoy [15] developed a finite strain shell element
for the Mooney-Rivlin material model which uses a plane-stress consti-
tutive relation for the laminae and updates afterwards the thickness in a
staggered iterative formulation.

• Simo and co-workers [16]-[20] in the period 1988-1992 developed a com-
plete 3D nonlinear shell element formulation.

• Ramm and co-workers [21]-[22] developed 3D shell elements considering
also through-the-thickness stretching.
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In 1995 Dvorkin, Pantuso and Repetto developed the MITC4-TLH ele-
ment, that based on the original MITC4 formulation can model finite strain
elasto-plastic deformations [23]-[24]. This element imposes the condition of zero
transversal stresses and its computational cost is rather high.
In the present paper we present an element that is also based on the MITC4

formulation and can efficiently model finite strain deformations using a general
3D material model.
The most relevant differences with the original MITC4 formulation are:

• For each quadrilateral element we have 22 d.o.f.: 5 generalized displace-
ments per node plus 2 extra d.o.f. to incorporate the through-the-thickness
stretching.

• We use a general 3D constitutive relation instead of the original laminae
plane stress constitutive relation.

There are many hyperelastic constitutive models available in the literature.
In order to explore the differences in their responses we implemented, for the
new MITC4-3D shell element, three simple isotropic hyperelastic constitutive
relations and we analyzed their responses for a number of finite strain cases.

2 The MITC4-3D formulation
Some of the basic features of our MITC4-3D element are:

1. The shell geometry is interpolated using mid-surface nodes and director
vectors.

2. The nodal displacements and transverse shear strains are interpolated us-
ing the original MITC4 formulation [11].

3. For interpolating the director vectors special care is taken to avoid spurious
director vector stretches [17] [25].

4. Two additional degrees of freedom are considered to include a linear thick-
ness stretching. These thickness-stretching degrees of freedom are con-
densed at the element level.

2.1 Shell element geometry in the reference configuration

Following the MITC4 formulation we define, in the reference configuration,
nodes on the shell mid-surface and at each node we define a director vector
which represents, at that node, an approximation to the shell mid-surface [26].
Therefore, defining inside the element the natural coordinate system (r, s, t)

[8], for the element shown in Fig. 1 with constant thickness we can write,
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Figure 1: Reference (t = 0) and spatial (t = τ) configurations
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ox(r, s, t) = hk(r, s)
oxk +

t

2
od a (1a)

where [17] [25],

od =
hk(r, s)

oV k
n¯̄̄¯̄̄

hk(r, s) oV
k
n

¯̄̄¯̄̄ (1b)

and,
hk(r, s) : isoparametric 2D interpolation functions [8],
oxk : k-node position vector,
a : constant element thickness.,
oV k

n : k-node director vetor; with
¯̄̄¯̄̄
oV k

n

¯̄̄¯̄̄
= 1.

In the above equations and in what follows we use the summation convention.

2.2 Shell geometry in the spatial configuration

For interpolating the spatial geometry in the τ -configuration, Fig. 1, we use,

τx(r, s, t) = hk(r, s)
τxk +

t

2
(τλo +

τλ1t)
τd a (2a)

τd =
hk(r, s)

τV k
n¯̄̄¯̄̄

hk(r, s) τV
k
n

¯̄̄¯̄̄ . (2b)

For the director vectors in the spatial configuration also
¯̄̄¯̄̄
τV k

n

¯̄̄¯̄̄
= 1.

In Eqn.(2a) τλo is a constant thickness stretching and τλ1 is the through-
the-thickness stretching gradient.
In our formulation the element d.o.f. τλo and τλ1 are discontinuous across

element boundaries and they will be condensed at the element level.

2.3 Incremental displacements

The incremental displacements to evolve from the τ -configuration to the τ+∆τ -
configuration are,

u =τ+∆τ x− τx (3a)

u(r, s, t) = hk(r, s) uk (3b)

+
t

2
a (τλo +∆λo +

τλ1t+∆λ1t)
hk(r, s)

τ+∆τV k
n¯̄̄¯̄̄

hk(r, s) τ+∆τV
k
n

¯̄̄¯̄̄
− t

2
a (τλo +

τλ1t)
hk(r, s)

τV k
n¯̄̄¯̄̄

hk(r, s) τV
k
n

¯̄̄¯̄̄ .
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In the above, τ+∆τλo = τλo +∆λo and τ+∆τλ1 =
τλ1 +∆λ1.

For the director vector rotations we can write [27],

τ+∆τV k
n =

τ+∆τ
τ R · τV k

n (4a)

with,

τ+∆τ
τ R = I

3
+
sin θk
θk

Θk +
1

2

∙
sin (θk/2)

(θk/2)

¸2 ³
Θk
´2

. (4b)

Using as base vectors
³
τV k

1 ;
τV k

2 ;
τV k

n

´
defined as,

τV k
1 =

τey × τV k
n¯̄̄¯̄̄

τey × τV k
n

¯̄̄¯̄̄ (4c)

τV k
2 = τV k

n ×τ V k
1 (4d)

where τey is the y−base vector at time τ of the fixed cartesian system in Fig.
1. We use a special definition for the case τey × τV k

n = 0 [8]:

τV k
1 = τez (4e)

τV k
2 = τex (4f)

Also,

θk =
h
(αk)

2 + (βk)
2
i 1
2

(4g)

£
Θk
¤
=

⎡⎣ 0 0 βk
0 0 −αk
−βk αk 0

⎤⎦ . (4h)

Then we write Eqn. (4a) as in Ref. [27],

τ+∆τV k
n =

τV k
n − αk

τV k
2 + βk

τV k
1 −

1

2

h
(αk)

2 + (βk)
2
iτ

V k
n + h.o.t . (5)

Hence,
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u = hk uk +
t

2

a¯̄̄¯̄̄
hk τV k

n

¯̄̄¯̄̄(τλo +τ λ1t) hk (−αk τV k
2 + βk

τV k
1) (6)

− t

4

a¯̄̄¯̄̄
hk τV k

n

¯̄̄¯̄̄(τλo +τ λ1t) hk

h
(αk)

2
+ (βk)

2
i

τV k
n

+
t

2

a¯̄̄¯̄̄
hk τV k

n

¯̄̄¯̄̄ (∆λo +∆λ1 t)hk τV k
n

+
t

2

a¯̄̄¯̄̄
hk τV k

n

¯̄̄¯̄̄ (∆λo +∆λ1 t) hk (−αk τV k
2 + βk

τV k
1)

− t

4

a¯̄̄¯̄̄
hk τV k

n

¯̄̄¯̄̄ (∆λo +∆λ1 t) hk h(αk)2 + (βk)2i τV k
n

+h.o.t.

where, to simplify the formulation, we made the approximation,¯̄̄¯̄̄
hk

τ+∆τV k
n

¯̄̄¯̄̄
≈
¯̄̄¯̄̄
hk

τV k
n

¯̄̄¯̄̄
. (7)

2.4 Strains interpolation

We can write the Green-Lagrange strain tensor as,

τ
oε =

τ
oeεIJ oegI oegJ (8)

where,
τ
oeεIJ : covariant components in the element natural coordinate system,
oegI : contravariant base vectors of the element natural coordinate system

in the reference configuration,
oegI oegJ : tensor product of the two contravariant base vectors [28].
We use, following the MITC4 interpolation [11] for the in-layer strain com-

ponents,

τ
oeεrr = [τoeεrr]DI (9a)
τ
oeεss = [τoeεss]DI (9b)
τ
oeεrs = [τoeεrs]DI (9c)

In the above equations [eεij ]DI are the strain components calculated from
the displacement interpolation. In the same way, for the through-the-thickness
strain component we use,

7



r

st
A

D
C

B

Figure 2: Sample points for the MITC4 transverse shear strain interpolations

τ
oeεtt = [τoeεtt]DI (9d)

and using the sample points indicated in Fig. 2 we interpolate the transverse
shear strain components,

τ
oeεrt =

1

2
(1 + s) [τoeεrt]DI

A +
1

2
(1− s) [τoeεrt]DI

C (9e)

τ
oeεst =

1

2
(1 + r) [τoeεst]DI

D +
1

2
(1− r) [τoeεst]DI

B . (9f)

In the above equations [eεij ]DI
SP are the strain components calculated from

the displacement interpolation at the sampling point “ SP ”.

3 Hyperelastic constitutive relations
The shell element formulation developed in the previous section is a fully 3D
formulation since the in-layer plane stress hypothesis used in the original MITC4
formulation was not invoked in this case.
There are many hyperelastic constitutive models available in the literature

[29]. In order to explore the differences in their responses we implemented,
for the new MITC4-3D shell element, three hyperelastic isotropic constitutive
relations and we analyzed their responses for a number of finite strain cases.
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3.1 Hooke’s law relating 2nd Piola-Kirchhoff stresses and
Green-Lagrange strains

In this case the elastic energy per unit volume of the reference (τoU) configuration
is defined as [28],

τ
oU=

1

2
τ
oε : C :

τ
oε (10)

where τoε is the Green-Lagrange strain tensor [28] and C is the isotropic Hooke’s

constitutive fourth order tensor [28].
Using the Doyle-Ericksen formula [28] we get,

τ
oS = C : τ

oε (11)

where τ
oS is the second Piola-Kirchhoff stress tensor [28].

Hooke’s law establishes a linear relation between the deviatoric parts of the
stress and strain measures and a linear relation between their hydrostatic parts.
It should be noticed that, in this case, since for finite strains the hydrostatic part
of the Green-Lagrange strain tensor does not represent the volumetric strain,
the physics in Eqn. (11) is not obvious.

3.2 Compressible neo-Hookean model

We use the neo-Hookean model formulated in [30] where the elastic energy is
split into a volumetric and a deviatoric part,

τ
oU= τ

oUv(τJ) + τ
oUD(τb) . (12)

In the above,

τJ =
oρ
τρ

(13a)

τb = (τJ)−
2
3 τb (13b)

The second order tensor τ
oX is the deformation gradient tensor;

τb = τ
oX· τ

oX
T is the Finger strain tensor and (oρ, τρ) are the densities in the

reference and spatial configurations respectively. In Cartesian coordinates
τJ = det

£
τ
oX
¤
[28].

For the terms in Eqn. (12) Simo and Hughes use [30],

τ
oUv(τJ) =

1

2
κ

∙
1

2

h
(τJ)2 − 1

i
− ln (τJ)

¸
(13c)

τ
oUD(tb) =

1

2
G
£
tr(τb)− 3

¤
=
1

2
G
£
tr( τoC )− 3

¤
. (13d)
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Where,

τ
oC = (τJ)

− 2
3 τ

oX
T · τ

oX

and,

κ =
E

3(1− 2ν) (compressibility modulus)

G =
E

2(1 + ν)
(shear modulus)

E : Young´s modulus

ν : Poisson´s coefficient

Hence, using the Doyle-Ericksen formula and doing a push-forward [28] we
get,

ττ = τJ
d τ
oUv

d τJ
τg + 2 dev

"
τ
oX · ∂ τ

oUD
∂ τ
oC

·
¡
τ
oX
¢T#

(14)

where ττ is the Kirchhoff stress tensor [28].
In this case the relation between the hydrostatic component of ττ and the

volumetric stretch τJ is explicit.

3.3 Hooke’s law relating the Hencky strain tensor and its
energy conjugate stress tensor

In this case the elastic energy per unit volume of the reference configuration is
defined as,

τ
oU=

1

2
τ
oH : C : τ

oH (15)

where τ
oH = ln τ

oU is the Hencky or logarithmic strain tensor [28], τoU is the
right stretch tensor and C is the isotropic Hooke’s constitutive fourth order

tensor.
For an isotropic elastic material the stress measure energy-conjugate to the

Hencky strain tensor is τ
oΓ with,

τ
oΓ

IJ =
£
τ
oR
∗ ¡τ ij¢¤IJ (16)

in the above equation
£
τ
oR
∗ ¡τ ij¢¤IJ are the rotational pull-back of the con-

travariant components of the Kirchhoff stress tensor [28].
Using the Doyle-Ericksen formula we get,

τ
oΓ = C : τ

oH . (17)
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E =1.E06
ν =0.3
a=1.0P/2
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10

Figure 3: Plane stress axial test

It is important to notice that the hydrostatic part of the Hencky strain
tensor is the logarithmic volumetric strain; hence, in this case the linear relation
between the hydrostatic component of τoΓ and the logarithmic volumetric strain
has an obvious physical meaning.
For this constitutive relation we use the interpolations in Eqns. (9a) - (9f)

but with the Hencky strain components instead of the Green - Lagrange strain
components.

3.4 The behavior of the considered hyperelastic models

In order to explore the response that we can expect from the considered hyper-
elastic models, in Fig. 3 we analyze a simple plane-stress tension test.

It is obvious that except for very small axial displacements (infinitesimal
strain situation) the three material models provide different responses, being
the response of the first material model the most different while the responses
of the other two models are close.
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When dealing with a specific material only a laboratory test can indicate
which hyperelastic law is the one that best approximates its behavior.
For metals undergoing finite elasto-plastic deformations, laboratory tests

performed by Anand [31] indicate that using the standard values of the Young
modulus and Poisson coefficient, the Hooke’s law relating the Hencky strain
tensor and its energy conjugate stress tensor provides the results that best ap-
proximate the actual material behavior for moderate elastic strains.

4 The incremental formulation
Using a total Lagrangian formulation we can write the Principle of Virtual Work
for the equilibrium configuration at τ +∆τ [8],Z

oV

τ+∆τ
o SIJ δ τ+∆τ

o εIJ
odV = τ+∆τR (18)

where τ+∆τR is the virtual work of the external loads acting on the solid body
in the τ +∆τ−configuration.
Now we can write [8],

τ+∆τ
o SIJ = τ

oS
IJ + oS

IJ (19a)
τ+∆τ
o εIJ = τ

oεIJ + oεIJ (19b)

oεIJ = oeIJ + oηIJ (19c)

where oeIJ is the increment in the Green-Lagrange strain tensor, linear in the
incremental displacement and oηIJ is the nonlinear increment.
Using the incremental constitutive equation,

oS
IJ = oC

IJKL
oεKL (20)

we get the linearized incremental equation,

Z
oV

oC
IJKL

oeKL δoeIJ
odV+

Z
oV

τ
oS

IJ δ oηIJ
odV = τ+∆τR−

Z
oV

τ
oS

IJ δ oeIJ
odV .

(21)
In what follows we develop Eqn. (21) for the three hyperelastic material

models considered above.
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4.1 First case: linear relation between 2nd Piola-Kirchhoff
stresses and Green-Lagrange strains

We transform the components of the fourth order Hooke’s constitutive tensor
from a Cartesian system, with base vectors oeα, to the natural coordinate sys-
tem, with covariant base vectors oeg

I
, using,

Cαβγδ oeα
oeβ

oeγ
oeδ =

eCIJKL oeg
I
oeg

J
oeg

K
oeg

L
. (22)

Hence,

o
eSIJ = eCIJKL

oeεKL = eCIJKL (oeeKL + oeηKL) (23)

and the linearized incremental equation is,

Z
oV

eCIJKL
oeeKL δoeeIJ odV+

Z
oV

τ
o
eSIJ δoeηIJ odV = τ+∆τR−

Z
oV

τ
o
eSIJ δoeeIJ odV .

(24)

4.2 Second case: compressible neo-Hookean model

The components of the incremental constitutive tensor can be calculated from,

oC
LMPQ = 2

∂ τ
oS

LM

∂ τ
oCPQ

(25)

where τ
oC = τ

oX
T · τ

oX is the Green strain tensor. The above derivative is
calculated using Serrin formula [28] that for an isotropic material (τoS and

τ
oC

are colinear tensors) can be written as,

τ
oS

LM = τ
0S

I

⎡⎣(τλI)2 τ
oCLM −

³
τI1C − (τλI)

2
´

ogLM + τI3C ( τλI)
−2 ¡τ

oC
−1¢

LM

2 ( τλI)
4 − τI1C (λI)

2 + τI3C ( τλI)
−2

⎤⎦
(26)

in the above,

τ
oS

1 =
1

(τλ1)
2

"
κ

2

¡
τJ 2 − 1

¢
+G (τJ)−2/3

Ã
2 ( τλ1)

2 − ( τλ2)2 − ( τλ3)2

3

!#
τ
oS

2 =
1

(τλ2)
2

"
κ

2

¡
τJ 2 − 1

¢
+G (τJ)−2/3

Ã
2 ( τλ2)

2 − ( τλ1)2 − ( τλ3)2

3

!#

τ
oS

3 =
1

(τλ3)
2

"
κ

2

¡
τJ 2 − 1

¢
+G (τJ)

−2/3
Ã
2 ( τλ3)

2 − ( τλ1)2 − ( τλ2)2

3

!#

13



where τ
oS

I are the eigenvalues of τ
oS calculated using Eqn. (14) and doing a

pull-back [28]; ( τλI)
2 are the eigenvalues of ( τ

oC ) and
¡
τI1C ;

τI2C ;
τI3C

¢
are

the invariants of τ
oC .

To calculate ∂ τλ I

∂ τ
oCPQ

we use the characteristic polynomial of the Green tensor
[28] and calculate its derivative,

− ( τλI)6 + τI1C ( τλI)
4 − τI2C ( τλI)

2
+ τI3C = 0 . (27)

Of course we do not loose the hyperelastic symmetry, that is to say,

oC
LMPQ = oC

PQLM . (28)

After the above calculations we use the neo-Hookean incremental constitu-
tive tensor in Eqns.(21).

4.3 Third case: linear relation between the Hencky strain
tensor and its energy conjugate stress tensor

We define the fourth order tensor,

τ
oD

MN
IJ =

∂ τ
oHIJ

∂ τ
oεMN

. (29)

To calculate the above defined tensor components we use again the Serrin
formula. Using the tensor τoD we can write,

o
eΓIJ =o

eCIJKL
o
eHKL = o

eCIJKL eDMN
KL (oeeMN + oeηMN ) . (30)

Hence, the linearized incremental equation (21) can be written as,

Z
oV

o
eCIJKL τ

oD
PQ
IJ

τ
oD

RS
KL oeePQ δoeeRS odV +

Z
oV

τ
o
eΓIJ τ

oD
MN
IJ δoeηMN

odV =

τ+∆τR−
Z
oV

τ
o
eΓIJ τ

oD
MN
IJ δoeeMN

odV . (31)

The resulting stiffness matrices are, of course, also symmetric.

5 Numerical studies
The d.o.f. (∆λo,∆λ1) are condensed at the element level and (20x20) element
stiffness matrices are obtained and assembled into the global stiffness matrices.
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5.1 Basic numerical studies

5.1.1 Convergence

The MITC4-3D shell element inherits from the MITC4 element the following
properties:

• It does not contain spurious rigid body modes.

• It satisfies Irons’ Patch Test.

5.1.2 Conditioning

In order to investigate the conditioning of the MITC4-3D element in Fig. 4
we compare, for a very thin element, the conditioning number of the stiffness
matrices corresponding to a standard MITC4 element and to the new element.
We use the conditioning number defined as [8],

cond (K) = log10
Λmax
Λmin

. (32)

In the above equation,
Λmax : maximum eigenvalue of the stiffness matrix,
Λmin : minimum non-zero eigenvalue of the stiffness matrix.
The comparison was performed considering the three defined hyperelastic

constitutive relations and three different values of the Poisson coefficient. In
the case of the MITC4-3D element the eigenvalues correspond to the condensed
(20x20) stiffness matrix.
We see that the conditioning number of the MITC4-3D element is only

slightly deteriorated in the case of an extreme value of the Poisson coefficient,
as compared with the conditioning number of the standard MITC4 element.

5.2 Finite strain analyses

In this subsection we are going to analyze several cases of hyperelastic shells
deforming into the finite strain regime.
For each case we consider the three hyperelastic constitutive models de-

scribed above; hence, the purpose of this section is twofold: the investigation
of the numerical performance of the MITC4-3D element formulation and the
investigation of the differences in the shell structural responses corresponding
to the three material models.

5.2.1 Cantilever under constant moment

In Fig. 5 we present the results for an elastic cantilever with (L/a) = 100,
E = 1.2E07 and ν = 0.0 .
We obtain the same result for the three considered material models because

the strains developed in the cantilever beam are only moderately high.
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10
10

E=1.E07

a=0.01

Figure 4: Conditioning of the MITC4-3D element compared with the condition-
ing of the MITC4 element
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Figure 5: Elastic cantilever under constant moment (L/a) = 100
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Figure 6: Vertical displacement of a cantilever under tip load (L/a) = 10

5.2.2 Cantilever under tip load

In Fig. 6 we present the results for the tip vertical displacement of an elastic
cantilever with (L/a) = 10 , E = 1.2E07 and ν = 0.3.
Regarding the equilibrium path we obtain the same result for the three

material models considered. In Fig. 7 we present the results for (τλo,τ λ1) and
in this case the results corresponding to the first constitutive relation are only
slightly different from the results corresponding to the other two constitutive
relations.
Again the reason for these very similar responses lies in the fact that the

strains developed in the cantilever beam are only moderately high.
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Figure 7: Cantilever under tip load (L/a) = 10. Through-the-thickness stretch-
ing in the element at the fixed boundary
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E=2.1E06
ν=0.3
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a=0.1
Element number = 90
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.
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y
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ΔR

Figure 8: Infinite cylinder under internal pressure

5.2.3 Infinitely long cylinder under internal pressure

We consider the infinite cylinder represented in Fig. 8 under internal pressure.
In the same figure we represent the equilibrium paths obtained for the infinitely
long cylinder considering the three hyperelastic constitutive models discussed
above. The strains developed in the cylinder wall are quite high; hence, the
equilibrium paths are quite different, in particular the one corresponding to the
first hyperelastic model.

Finally in Fig. 9 we present the predictions of the through-the-thickness
stretching obtained with the three models considering two different values of
the Poisson coefficient. Again the higher the strains the larger the difference
between the structural responses predicted using the first constitutive model
and the structural response predicted using any of the other two models.
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Figure 9: Infinitely long cylinder. Through-the-thickness stretching
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E=4000.
ν=0.49
R=26.3
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y

z

Figure 10: Sphere under internal pressure

5.2.4 Sphere under internal pressure

For the analysis of a sphere under internal pressure we consider two cases; a
thick and a thin sphere, as it is shown in Fig. 10. For symmetry reasons only
one eight of the shell is modeled.

In Fig. 11 we present the results corresponding to the thick case; again, the
first material model provides results that are quite different from the results
provided by the other two material models.

In Fig. 12 we present the results corresponding to the thin case and the
comment related to the behavior of the material constitutive models is again
the same.

Notice that, as we should expect, when the thickness decreases λ1 → 0.
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Figure 11: Sphere under internal pressure - thick case
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Figure 12: Sphere under internal pressure - thin case
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(a)

(b)

F=1.0

x

y

z

E=2.9E07
L/h=240
ν=0.22
a=0.05

Figure 13: Twisted ribbon considering two load cases. Loaded point displace-
ments

5.2.5 Twisted ribbon

For the two load cases represented in Fig. 13, in which the resulting strains
are only moderate, the load displacements are identical considering the three
material models.

5.2.6 Cylinder under line load

In Fig. 14 we describe the analyzed case.

In Figs. 15 and 16 we present the results obtained, for the three different
hyperelastic constitutive relations.
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position

A

A
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E =16,800
ν =0.4
R =9.0
a=2.0
Total length=30.
(only half is modeled for symmetry reasons)

Figure 14: Cylinder under line load
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Figure 15: Thickness stretching at different depths for the element containing
node A
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Figure 16: Load - displacement curves for the cylinder under line load
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a=0.04
E = 6.825E07
ν =0.3

Figure 17: Pinched spherical shell with a 18◦ top hole

5.2.7 Pinched hemispherical shell

This case, depicted in Fig. 17, was used as a test case in many previous publica-
tions (e.g. [18]). It is a shell element with two opposite polar holes spanning a
latitude of 18◦ each; for symmetry reasons only one eight of the shell is modeled.

The results obtained with the MITC4-3D element and the above described
constitutive relations, using two different meshes, are presented in Fig. 18.

In this case the results corresponding to the three constitutive models con-
verge to almost the same result when the mesh is refined.

6 Conclusions
On the basis of the MITC4 shell element formulation, we developed the MITC4-
3D shell element formulation for finite strain analyses of shell structures using
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Figure 18: Pinched spherical shell results
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general 3D constitutive models. In this paper the new element was implemented
for the analyses of hyperelastic shell structures and the results indicate that it
is a very effective element.
The results obtained considering three of the hyperelastic material models

available in the literature are quite different when the developed strains are
relatively high; this indicates that, for analyzing actual engineering examples,
experimental data should be used to decide on the most suitable constitutive
relation.
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